BBQ-Tree – A Decision Tree with Boolean and Quantum Logic Decisions | SpringerLink
Skip to main content

BBQ-Tree – A Decision Tree with Boolean and Quantum Logic Decisions

  • Conference paper
  • First Online:
Advances in Databases and Information Systems (ADBIS 2024)

Abstract

This study proposes the BBQ-Tree, a new logic-based classifier that combines the two concepts of classical Decision Trees and Quantum-Logic Decision Trees into a generalized model. It thus creates a method that has the power to solve classification problems that incorporate both curved and linear decision boundaries, with a particular focus on interpretability. In addition to the model itself, ways for its efficient training are discussed. Our experimental evaluation demonstrates that our approach is able to produce models that remain compact and provide good insights over trends in data while maintaining an accuracy not worse than Decision Trees alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. CRC Press, New York (1984). https://doi.org/10.1201/9781315139470

  2. Brodley, C.E., Utgoff, P.E.: Multivariate decision trees. Mach. Learn. 19, 45–77 (1995)

    Article  Google Scholar 

  3. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning (2017). https://doi.org/10.48550/ARXIV.1702.08608

  4. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. The Morgan Kaufmann Series in Data Management Systems, Boston (2012). https://doi.org/10.1016/C2009-0-61819-5

  5. Hastie, T., Tibshirani, R.: Generalized additive models. Stat. Sci. 1(3), 297–310 (1986)

    MathSciNet  Google Scholar 

  6. Heath, D., Kasif, S., Salzberg, S.: Induction of oblique decision trees. In: IJCAI, vol. 1993, pp. 1002–1007. Citeseer (1993)

    Google Scholar 

  7. Ittner, A., Schlosser, M.: Non-linear decision trees - NDT. In: International Conference on Machine Learning (1996)

    Google Scholar 

  8. Janikow, C.Z.: Fuzzy decision trees: issues and methods. IEEE Trans. Syst. Man Cybern. Part B Cybern. 28(1), 1–14 (1998)

    Article  Google Scholar 

  9. Jiménez, F., Martínez, C., Marzano, E., Palma, J.T., Sánchez, G., Sciavicco, G.: Multiobjective evolutionary feature selection for fuzzy classification. IEEE Trans. Fuzzy Syst. 27, 1085–1099 (2019)

    Article  Google Scholar 

  10. Lohweg, V.: Banknote authentication. UCI Machine Learning Repository (2013). https://doi.org/10.24432/C55P57

  11. Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2012, pp. 150–158. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2339530.2339556

  12. Olaru, C., Wehenkel, L.: A complete fuzzy decision tree technique. Fuzzy Sets Syst. 138(2), 221–254 (2003). https://doi.org/10.1016/S0165-0114(03)00089-7

    Article  MathSciNet  Google Scholar 

  13. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  14. Rihoux, B., Ragin, C.C.: Configurational Comparative Methods: Qualitative Comparative Analysis (QCA) and Related Techniques. Sage Publications, Thousand Oaks (2009). https://doi.org/10.4135/9781452226569

  15. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, Global Pearson Education, London (2021)

    Google Scholar 

  16. Schmitt, I.: QQL: a DB &IR query language. VLDB J. 17(1), 39–56 (2008). https://doi.org/10.1007/s00778-007-0070-1

    Article  Google Scholar 

  17. Schmitt, I.: QLDT: a decision tree based on quantum logic. In: Chiusano, S., et al. (eds.) New Trends in Database and Information Systems, pp. 299–308. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15743-1_28

    Chapter  Google Scholar 

  18. Schmitt, I.: QLDT+: efficient construction of a quantum logic decision tree. In: Proceedings of the 8th International Conference on Machine Learning Technologies, ICMLT 2023, Stockholm, Sweden, 10–12 March 2023, pp. 82–88. ACM (2023). https://doi.org/10.1145/3589883.3589895

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Stahl .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stahl, A., Schmitt, I. (2024). BBQ-Tree – A Decision Tree with Boolean and Quantum Logic Decisions. In: Tekli, J., Gamper, J., Chbeir, R., Manolopoulos, Y. (eds) Advances in Databases and Information Systems. ADBIS 2024. Lecture Notes in Computer Science, vol 14918. Springer, Cham. https://doi.org/10.1007/978-3-031-70626-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70626-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70628-8

  • Online ISBN: 978-3-031-70626-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics