Multi-task Learning for License Plate Recognition in Unconstrained Scenarios | SpringerLink
Skip to main content

Multi-task Learning for License Plate Recognition in Unconstrained Scenarios

  • Conference paper
  • First Online:
Document Analysis and Recognition - ICDAR 2024 (ICDAR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14804))

Included in the following conference series:

  • 602 Accesses

Abstract

The recognition of license plates in natural scenes often face challenges such as multi-directional and multi-line variations. Additionally, previous studies have treated license plate detection and recognition as separate tasks, resulting in inefficiencies and error accumulation. To address these challenges, we propose an end-to-end method for license plate detection and recognition using multi-task learning. Firstly, we introduce two parallel branches to detect the horizontal bounding box and the four corners of the license plate, enabling multi-directional license plate detection in a multi-task manner. The outputs from these branches are combined to enhance recognition accuracy. Secondly, we propose to extract global features to perceive character layout and utilize reading order to spatially attend to characters for recognizing multi-line license plates. Finally, we combine detection and recognition using the same backbone, with the detection branch based on multiple deep layers and the recognition branch based on multiple shallow layers, thereby constructing an end-to-end detection and recognition network. Comparative experiments on CCPD and RodoSol datasets validate that our method significantly outperforms state-of-the-art methods, particularly in scenarios involving multi-directional and multi-line license plates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atienza, R.: Data augmentation for scene text recognition. In: International Conference on Computer Vision Workshops, Montreal, BC, Canada, pp. 1561–1570. IEEE (2021)

    Google Scholar 

  2. Bochkovskiy, A., Wang, C., Liao, H.M.: Yolov4: optimal speed and accuracy of object detection. CoRR abs/2004.10934 (2020)

    Google Scholar 

  3. Cao, Y., Fu, H., Ma, H.: An end-to-end neural network for multi-line license plate recognition. In: International Conference on Pattern Recognition, Beijing, China, pp. 3698–3703. IEEE (2018)

    Google Scholar 

  4. Chen, S., Liu, Q., Chen, F., Yin, X.: End-to-end multi-line license plate recognition with cascaded perception. In: Fink, G.A., Jain, R., Kise, K., Zanibbi, R. (eds.) ICDAR 2023. LNCS, vol. 14191, pp. 274–289. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-41734-4_17

    Chapter  Google Scholar 

  5. Chen, S., Tian, S., Liu, Q., Chen, F., Yin, X.: Vertex adjustment loss for multidirectional license plate detection and recognition. In: International Conference on Ubiquitous Intelligence and Computing, Haikou, China, pp. 285–292. IEEE (2022)

    Google Scholar 

  6. Chen, S., et al.: End-to-end trainable network for degraded license plate detection via vehicle-plate relation mining. Neurocomputing 446, 1–10 (2021)

    Article  Google Scholar 

  7. Cheng, Z., Bai, F., Xu, Y., Zheng, G., Pu, S., Zhou, S.: Focusing attention: towards accurate text recognition in natural images. In: International Conference on Computer Vision, Venice, Venice, pp. 5086–5094. IEEE (2017)

    Google Scholar 

  8. Datondji, S.R.E., Dupuis, Y., Subirats, P., Vasseur, P.: A survey of vision-based traffic monitoring of road intersections. IEEE Trans. Intell. Transp. Syst. 17(10), 2681–2698 (2016)

    Article  Google Scholar 

  9. Fan, X., Zhao, W.: Improving robustness of license plates automatic recognition in natural scenes. IEEE Trans. Intell. Transp. Syst. 23(10), 18845–18854 (2022)

    Article  Google Scholar 

  10. Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, pp. 580–587. IEEE (2014)

    Google Scholar 

  11. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: International Conference on Computer Vision, Venice, Italy, pp. 2980–2988. IEEE (2017)

    Google Scholar 

  12. Henry, C., Ahn, S.Y., Lee, S.: Multinational license plate recognition using generalized character sequence detection. IEEE Access 8, 35185–35199 (2020)

    Article  Google Scholar 

  13. Huang, Q., Cai, Z., Lan, T.: A single neural network for mixed style license plate detection and recognition. IEEE Access 9, 21777–21785 (2021)

    Article  Google Scholar 

  14. Laroca, R., Cardoso, E.V., Lucio, D.R., Estevam, V., Menotti, D.: On the cross-dataset generalization in license plate recognition. In: International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pp. 166–178. SCITEPRESS, Online Streaming (2022)

    Google Scholar 

  15. Li, H., Wang, P., Shen, C.: Toward end-to-end car license plate detection and recognition with deep neural networks. IEEE Trans. Intell. Transp. Syst. 20(3), 1126–1136 (2019)

    Article  Google Scholar 

  16. Li, H., Wang, P., Shen, C., Zhang, G.: Show, attend and read: a simple and strong baseline for irregular text recognition. In: AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, USA, pp. 8610–8617. AAAI Press (2019)

    Google Scholar 

  17. Li, Z., Chen, S., Liu, Q., Chen, F., Yin, X.: Anchor-free location refinement network for small license plate detection. In: Yu, S., et al. (eds.) PRCV 2022. LNCS, vol. 13537, pp. 506–519. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18916-6_41

    Chapter  Google Scholar 

  18. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, pp. 936–944. IEEE (2017)

    Google Scholar 

  19. Lin, T., Maji, S.: Visualizing and understanding deep texture representations. In: IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp. 2791–2799. IEEE (2016)

    Google Scholar 

  20. Liu, Q., Chen, S.-L., Li, Z.-J., Yang, C., Chen, F., Yin, X.-C.: Fast recognition for multidirectional and multi-type license plates with 2D spatial attention. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12824, pp. 125–139. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86337-1_9

    Chapter  Google Scholar 

  21. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, pp. 8759–8768. IEEE (2018)

    Google Scholar 

  22. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  23. Lu, Q., Liu, Y., Huang, J., Yuan, X., Hu, Q.: License plate detection and recognition using hierarchical feature layers from CNN. Multim. Tools Appl. 78(11), 15665–15680 (2019)

    Article  Google Scholar 

  24. Luo, C., Jin, L., Sun, Z.: MORAN: a multi-object rectified attention network for scene text recognition. Pattern Recognit. 90, 109–118 (2019)

    Article  Google Scholar 

  25. Masood, S.Z., Shu, G., Dehghan, A., Ortiz, E.G.: License plate detection and recognition using deeply learned convolutional neural networks. arXiv abs/1703.07330 (2017)

    Google Scholar 

  26. Meng, A., Yang, W., Xu, Z., Huang, H., Huang, L., Ying, C.: A robust and efficient method for license plate recognition. In: International Conference on Pattern Recognition, Beijing, China, pp. 1713–1718. IEEE (2018)

    Google Scholar 

  27. Paidi, V., Fleyeh, H., Håkansson, J., Nyberg, R.G.: Smart parking sensors, technologies and applications for open parking lots: a review. IET Intel. Transport Syst. 12(8), 735–741 (2018)

    Article  Google Scholar 

  28. Qiao, L., et al.: MANGO: a mask attention guided one-stage scene text spotter. In: AAAI Conference on Artificial Intelligence, pp. 2467–2476. AAAI Press, Virtual Event (2021)

    Google Scholar 

  29. Qin, S., Liu, S.: Towards end-to-end car license plate location and recognition in unconstrained scenarios. Neural Comput. Appl. 34(24), 21551–21566 (2022)

    Article  Google Scholar 

  30. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp. 779–788. IEEE (2016)

    Google Scholar 

  31. Selmi, Z., Halima, M.B., Alimi, A.M.: Deep learning system for automatic license plate detection and recognition. In: International Conference on Document Analysis and Recognition, Kyoto, Japan, pp. 1132–1138. IEEE (2017)

    Google Scholar 

  32. Shi, B., Wang, X., Lyu, P., Yao, C., Bai, X.: Robust scene text recognition with automatic rectification. In: IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp. 4168–4176. IEEE Computer Society (2016)

    Google Scholar 

  33. Silva, S.M., Jung, C.R.: License plate detection and recognition in unconstrained scenarios. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 593–609. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_36

    Chapter  Google Scholar 

  34. Spanhel, J., Sochor, J., Juránek, R., Herout, A., Marsik, L., Zemcík, P.: Holistic recognition of low quality license plates by CNN using track annotated data. In: International Conference on Advanced Video and Signal Based Surveillance, Lecce, Italy, pp. 1–6. IEEE Computer Society (2017)

    Google Scholar 

  35. Wang, T., et al.: Decoupled attention network for text recognition. In: AAAI Conference on Artificial Intelligence, New York, NY, USA, pp. 12216–12224. AAAI Press (2020)

    Google Scholar 

  36. Wang, W., Yang, J., Chen, M., Wang, P.: A light CNN for end-to-end car license plates detection and recognition. IEEE Access 7, 173875–173883 (2019)

    Article  Google Scholar 

  37. Xu, Z., et al.: Towards end-to-end license plate detection and recognition: a large dataset and baseline. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 261–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_16

    Chapter  Google Scholar 

  38. Yang, Y., Xi, W., Zhu, C., Zhao, Y.: HomoNet: unified license plate detection and recognition in complex scenes. In: Gao, H., Wang, X., Iqbal, M., Yin, Y., Yin, J., Gu, N. (eds.) CollaborateCom 2020. LNICST, vol. 350, pp. 268–282. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67540-0_16

    Chapter  Google Scholar 

  39. Zhang, L., Wang, P., Li, H., Li, Z., Shen, C., Zhang, Y.: A robust attentional framework for license plate recognition in the wild. IEEE Trans. Intell. Transp. Syst. 22(11), 6967–6976 (2021)

    Article  Google Scholar 

  40. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-IoU loss: faster and better learning for bounding box regression. In: AAAI Conference on Artificial Intelligence, New York, NY, USA, pp. 12993–13000. AAAI Press (2020)

    Google Scholar 

  41. Zherzdev, S., Gruzdev, A.: LPRNet: license plate recognition via deep neural networks. arXiv abs/1806.10447 (2018)

    Google Scholar 

  42. Zhou, X., Cheng, Y., Jiang, L., Ning, B., Wang, Y.: Fafenet: a fast and accurate model for automatic license plate detection and recognition. IET Image Process. 17(3), 807–818 (2023)

    Article  Google Scholar 

  43. Zou, Y., et al.: License plate detection and recognition based on yolov3 and ILPRNET. Signal Image Video Process. 16(2), 473–480 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Lun Mo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mo, ZL., Chen, SL., Liu, Q., Chen, F., Yin, XC. (2024). Multi-task Learning for License Plate Recognition in Unconstrained Scenarios. In: Barney Smith, E.H., Liwicki, M., Peng, L. (eds) Document Analysis and Recognition - ICDAR 2024. ICDAR 2024. Lecture Notes in Computer Science, vol 14804. Springer, Cham. https://doi.org/10.1007/978-3-031-70533-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70533-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70532-8

  • Online ISBN: 978-3-031-70533-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics