A Framework to Support the Validation of Process Mining Inquiries | SpringerLink
Skip to main content

A Framework to Support the Validation of Process Mining Inquiries

  • Conference paper
  • First Online:
Business Process Management Forum (BPM 2024)

Abstract

In exploratory process mining, analysts often start with limited knowledge of the log. As they seek to improve their understanding of the log, they develop expectations about what the results might be. Based on these expectations, they then make inquiries and translate them into queries against the log. However, during the analysis, analysts need to evaluate and compare the results of their queries to be able to validate them against their expectations. In this paper, we propose a framework to support process analysts in validating their query results and to enable them to reflect on their analytical process. The framework helps analysts to record their queries and results and allows them to characterize and compare the results obtained with different queries, thereby facilitating the validation process. We implemented the framework as a Python library that can be easily extended and integrated into existing process mining environments. We also demonstrated the usefulness of the framework through an extensive analysis of a real event log.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7550
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Process mining techniques also provide event filters. In this paper, we focus on cases as we consider them as the main unit of interest for the analysis.

  2. 2.

    LogView: https://zenodo.org/doi/10.5281/zenodo.11404207.

References

  1. van der Aalst, W.M.: Process mining: a 360 degree overview. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 3–34. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_1

    Chapter  Google Scholar 

  2. Alsallakh, B., Micallef, L., Aigner, W., Hauser, H., Miksch, S., Rodgers, P.: Visualizing sets and set-typed data: state-of-the-art and future challenges. In: Eurographics Conference on Visualization (EuroVis), pp. 1–21. Eurographics (2014)

    Google Scholar 

  3. Bauer, M., Senderovich, A., Gal, A., Grunske, L., Weidlich, M.: How much event data is enough? A statistical framework for process discovery. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 239–256. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_15

    Chapter  Google Scholar 

  4. Bernard, G., Andritsos, P.: Selecting representative sample traces from large event logs. In: International Conference on Process Mining (ICPM), pp. 56–63 (2021). https://doi.org/10.1109/ICPM53251.2021.9576679

  5. Berti, A., van Zelst, S., Schuster, D.: PM4Py: a process mining library for Python. Softw. Impacts 17, 100556 (2023). https://doi.org/10.1016/j.simpa.2023.100556

    Article  Google Scholar 

  6. Donadello, I., Riva, F., Maggi, F.M., Shikhizada, A.: Declare4Py: a Python library for declarative process mining. In: BPM Demos, pp. 117–121. CEUR (2022)

    Google Scholar 

  7. de Leoni, M., Mannhardt, F.: Road traffic fine management process. Eindhoven Unive. Technol. Dataset 284 (2015)

    Google Scholar 

  8. Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R., Pfister, H.: UpSet: visualization of intersecting sets. IEEE Trans. Vis. Comput. Graph. 20(12), 1983–1992 (2014). https://doi.org/10.1109/TVCG.2014.2346248

    Article  Google Scholar 

  9. Mannhardt, F., De Leoni, M., Reijers, H.A., Van Der Aalst, W.M.: Balanced multi-perspective checking of process conformance. Computing 98, 407–437 (2016). https://doi.org/10.1007/s00607-015-0441-1

    Article  MathSciNet  Google Scholar 

  10. Mottin, D., Lissandrini, M., Velegrakis, Y., Palpanas, T.: Exemplar queries: a new way of searching. VLDB J. 25, 741–765 (2016). https://doi.org/10.1007/s00778-016-0429-2

    Article  Google Scholar 

  11. Nguyen, H., Dumas, M., La Rosa, M., ter Hofstede, A.H.M.: Multi-perspective comparison of business process variants based on event logs. In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 449–459. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_32

    Chapter  Google Scholar 

  12. Sacha, D., Stoffel, A., Stoffel, F., Kwon, B.C., Ellis, G., Keim, D.A.: Knowledge generation model for visual analytics. IEEE Trans. Vis. Comput. Graph. 20(12), 1604–1613 (2014). https://doi.org/10.1109/TVCG.2014.2346481

    Article  Google Scholar 

  13. Salas-Urbano, M., Capitán-Agudo, C., Cabanillas, C., Resinas, M.: LoVizQL: a query language for visualizing and analyzing business processes from event logs. In: Monti, F., Rinderle-Ma, S., Ruiz Cortés, A., Zheng, Z., Mecella, M. (eds.) ICSOC 2023. LNCS, vol. 14420, pp. 13–28. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-48424-7_2

    Chapter  Google Scholar 

  14. Seeliger, A., Sánchez Guinea, A., Nolle, T., Mühlhäuser, M.: ProcessExplorer: intelligent process mining guidance. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 216–231. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_15

    Chapter  Google Scholar 

  15. Völzer, H., Zerbato, F., Sulzer, T., Weber, B.: A fresh approach to analyze process outcomes. In: International Conference on Process Mining (ICPM), pp. 97–104. IEEE (2023). https://doi.org/10.1109/ICPM60904.2023.10271968

  16. Wuyts, B., Weytjens, H., vanden Broucke, S., De Weerdt, J.: DyLoPro: profiling the dynamics of event logs. In: Di Francescomarino, C., Burattin, A., Janiesch, C., Sadiq, S. (eds.) BPM 2023. LNCS, vol. 14159, pp. 146–162. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-41620-0_9

    Chapter  Google Scholar 

  17. Zerbato, F., Burattin, A., Völzer, H., Becker, P.N., Boscaini, E., Weber, B.: Supporting provenance and data awareness in exploratory process mining. In: Indulska, M., Reinhartz-Berger, I., Cetina, C., Pastor, O. (eds.) CAiSE 2023. LNCS, vol. 13901, pp. 454–470. Springer, Cha (2023). https://doi.org/10.1007/978-3-031-34560-9_27

    Chapter  Google Scholar 

  18. Zerbato, F., Soffer, P., Weber, B.: Initial insights into exploratory process mining practices. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNBIP, vol. 427, pp. 145–161. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85440-9_9

    Chapter  Google Scholar 

  19. Zerbato, F., Soffer, P., Weber, B.: Process mining practices: evidence from interviews. In: Di Ciccio, C., Dijkman, R., del Río Ortega, A., Rinderle-Ma, S. (eds.) BPM 2022. LNCS, vol. 13420, pp. 268–285. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16103-2_19

    Chapter  Google Scholar 

  20. Zimmermann, L., Zerbato, F., Weber, B.: What makes life for process mining analysts difficult? A reflection of challenges. Softw. Syst. Model. 1–29 (2023). https://doi.org/10.1007/s10270-023-01134-0

Download references

Acknowledgment

This work is part of the ProMiSE project, funded by the Swiss National Science Foundation under Grant No.: 200021_197032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Zerbato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zerbato, F., Franceschetti, M., Weber, B. (2024). A Framework to Support the Validation of Process Mining Inquiries. In: Marrella, A., Resinas, M., Jans, M., Rosemann, M. (eds) Business Process Management Forum. BPM 2024. Lecture Notes in Business Information Processing, vol 526. Springer, Cham. https://doi.org/10.1007/978-3-031-70418-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70418-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70417-8

  • Online ISBN: 978-3-031-70418-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics