Abstract
In exploratory process mining, analysts often start with limited knowledge of the log. As they seek to improve their understanding of the log, they develop expectations about what the results might be. Based on these expectations, they then make inquiries and translate them into queries against the log. However, during the analysis, analysts need to evaluate and compare the results of their queries to be able to validate them against their expectations. In this paper, we propose a framework to support process analysts in validating their query results and to enable them to reflect on their analytical process. The framework helps analysts to record their queries and results and allows them to characterize and compare the results obtained with different queries, thereby facilitating the validation process. We implemented the framework as a Python library that can be easily extended and integrated into existing process mining environments. We also demonstrated the usefulness of the framework through an extensive analysis of a real event log.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Process mining techniques also provide event filters. In this paper, we focus on cases as we consider them as the main unit of interest for the analysis.
- 2.
References
van der Aalst, W.M.: Process mining: a 360 degree overview. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 3–34. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_1
Alsallakh, B., Micallef, L., Aigner, W., Hauser, H., Miksch, S., Rodgers, P.: Visualizing sets and set-typed data: state-of-the-art and future challenges. In: Eurographics Conference on Visualization (EuroVis), pp. 1–21. Eurographics (2014)
Bauer, M., Senderovich, A., Gal, A., Grunske, L., Weidlich, M.: How much event data is enough? A statistical framework for process discovery. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 239–256. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_15
Bernard, G., Andritsos, P.: Selecting representative sample traces from large event logs. In: International Conference on Process Mining (ICPM), pp. 56–63 (2021). https://doi.org/10.1109/ICPM53251.2021.9576679
Berti, A., van Zelst, S., Schuster, D.: PM4Py: a process mining library for Python. Softw. Impacts 17, 100556 (2023). https://doi.org/10.1016/j.simpa.2023.100556
Donadello, I., Riva, F., Maggi, F.M., Shikhizada, A.: Declare4Py: a Python library for declarative process mining. In: BPM Demos, pp. 117–121. CEUR (2022)
de Leoni, M., Mannhardt, F.: Road traffic fine management process. Eindhoven Unive. Technol. Dataset 284 (2015)
Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R., Pfister, H.: UpSet: visualization of intersecting sets. IEEE Trans. Vis. Comput. Graph. 20(12), 1983–1992 (2014). https://doi.org/10.1109/TVCG.2014.2346248
Mannhardt, F., De Leoni, M., Reijers, H.A., Van Der Aalst, W.M.: Balanced multi-perspective checking of process conformance. Computing 98, 407–437 (2016). https://doi.org/10.1007/s00607-015-0441-1
Mottin, D., Lissandrini, M., Velegrakis, Y., Palpanas, T.: Exemplar queries: a new way of searching. VLDB J. 25, 741–765 (2016). https://doi.org/10.1007/s00778-016-0429-2
Nguyen, H., Dumas, M., La Rosa, M., ter Hofstede, A.H.M.: Multi-perspective comparison of business process variants based on event logs. In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 449–459. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_32
Sacha, D., Stoffel, A., Stoffel, F., Kwon, B.C., Ellis, G., Keim, D.A.: Knowledge generation model for visual analytics. IEEE Trans. Vis. Comput. Graph. 20(12), 1604–1613 (2014). https://doi.org/10.1109/TVCG.2014.2346481
Salas-Urbano, M., Capitán-Agudo, C., Cabanillas, C., Resinas, M.: LoVizQL: a query language for visualizing and analyzing business processes from event logs. In: Monti, F., Rinderle-Ma, S., Ruiz Cortés, A., Zheng, Z., Mecella, M. (eds.) ICSOC 2023. LNCS, vol. 14420, pp. 13–28. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-48424-7_2
Seeliger, A., Sánchez Guinea, A., Nolle, T., Mühlhäuser, M.: ProcessExplorer: intelligent process mining guidance. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 216–231. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_15
Völzer, H., Zerbato, F., Sulzer, T., Weber, B.: A fresh approach to analyze process outcomes. In: International Conference on Process Mining (ICPM), pp. 97–104. IEEE (2023). https://doi.org/10.1109/ICPM60904.2023.10271968
Wuyts, B., Weytjens, H., vanden Broucke, S., De Weerdt, J.: DyLoPro: profiling the dynamics of event logs. In: Di Francescomarino, C., Burattin, A., Janiesch, C., Sadiq, S. (eds.) BPM 2023. LNCS, vol. 14159, pp. 146–162. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-41620-0_9
Zerbato, F., Burattin, A., Völzer, H., Becker, P.N., Boscaini, E., Weber, B.: Supporting provenance and data awareness in exploratory process mining. In: Indulska, M., Reinhartz-Berger, I., Cetina, C., Pastor, O. (eds.) CAiSE 2023. LNCS, vol. 13901, pp. 454–470. Springer, Cha (2023). https://doi.org/10.1007/978-3-031-34560-9_27
Zerbato, F., Soffer, P., Weber, B.: Initial insights into exploratory process mining practices. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNBIP, vol. 427, pp. 145–161. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85440-9_9
Zerbato, F., Soffer, P., Weber, B.: Process mining practices: evidence from interviews. In: Di Ciccio, C., Dijkman, R., del Río Ortega, A., Rinderle-Ma, S. (eds.) BPM 2022. LNCS, vol. 13420, pp. 268–285. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16103-2_19
Zimmermann, L., Zerbato, F., Weber, B.: What makes life for process mining analysts difficult? A reflection of challenges. Softw. Syst. Model. 1–29 (2023). https://doi.org/10.1007/s10270-023-01134-0
Acknowledgment
This work is part of the ProMiSE project, funded by the Swiss National Science Foundation under Grant No.: 200021_197032.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zerbato, F., Franceschetti, M., Weber, B. (2024). A Framework to Support the Validation of Process Mining Inquiries. In: Marrella, A., Resinas, M., Jans, M., Rosemann, M. (eds) Business Process Management Forum. BPM 2024. Lecture Notes in Business Information Processing, vol 526. Springer, Cham. https://doi.org/10.1007/978-3-031-70418-5_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-70418-5_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70417-8
Online ISBN: 978-3-031-70418-5
eBook Packages: Computer ScienceComputer Science (R0)