Multi-label Adaptive Batch Selection by Highlighting Hard and Imbalanced Samples | SpringerLink
Skip to main content

Multi-label Adaptive Batch Selection by Highlighting Hard and Imbalanced Samples

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14945))

  • 518 Accesses

Abstract

Deep neural network models have demonstrated their effectiveness in classifying multi-label data from various domains. Typically, they employ a training mode that combines mini-batches with optimizers, where each sample is randomly selected with equal probability when constructing mini-batches. However, the intrinsic class imbalance in multi-label data may bias the model towards majority labels, since samples relevant to minority labels may be underrepresented in each mini-batch. Meanwhile, during the training process, we observe that instances associated with minority labels tend to induce greater losses. Existing heuristic batch selection methods, such as priority selection of samples with high contribution to the objective function, i.e., samples with high loss, have been proven to accelerate convergence while reducing the loss and test error in single-label data. However, batch selection methods have not yet been applied and validated in multi-label data. In this study, we introduce a simple yet effective adaptive batch selection algorithm tailored to multi-label deep learning models. It adaptively selects each batch by prioritizing hard samples related to minority labels. A variant of our method also takes informative label correlations into consideration. Comprehensive experiments combining five multi-label deep learning models on thirteen benchmark datasets show that our method converges faster and performs better than random batch selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\left\lceil \pi \right\rceil \) is upward rounding function.

  2. 2.

    \(\textbf{A} \in \mathbb {R}^{q\times q}\) is the symmetric conditional probability matrix, which measures the co-occurrence relationship between labels, and the definition can be found in the supplementary materials.

References

  1. Bai, J., Kong, S., Gomes, C.: Disentangled variational autoencoder based multi-label classification with covariance-aware multivariate probit model. In: IJCAI, pp. 4313–4321 (2021)

    Google Scholar 

  2. Benavoli, A., Corani, G., Mangili, F.: Should we really use post-hoc tests based on mean-ranks? J. Mach. Learn. Res. 17(1), 152–161 (2016)

    MathSciNet  Google Scholar 

  3. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)

    Article  Google Scholar 

  4. Chakraborty, S., Balasubramanian, V., Panchanathan, S.: Optimal batch selection for active learning in multi-label classification. In: ACMMM, pp. 1413–1416 (2011)

    Google Scholar 

  5. Chang, H.S., Learned-Miller, E., McCallum, A.: Active bias: training more accurate neural networks by emphasizing high variance samples. In: NeurIPS, vol. 30 (2017)

    Google Scholar 

  6. Chen, B., Wornell, G.W.: Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Trans. Inf. Theory 47(4), 1423–1443 (2001)

    Article  MathSciNet  Google Scholar 

  7. Chen, S., Wang, R., Lu, J., Wang, X.: Stable matching-based two-way selection in multi-label active learning with imbalanced data. Inf. Sci. 610, 281–299 (2022)

    Article  Google Scholar 

  8. Daniels, Z., Metaxas, D.: Addressing imbalance in multi-label classification using structured hellinger forests. In: AAAI, vol. 31 (2017)

    Google Scholar 

  9. Fürnkranz, J., Hüllermeier, E., Loza Mencía, E., Brinker, K.: Multilabel classification via calibrated label ranking. Mach. Learn. 73, 133–153 (2008)

    Article  Google Scholar 

  10. Gerych, W., Hartvigsen, T., Buquicchio, L., Agu, E., Rundensteiner, E.A.: Recurrent Bayesian classifier chains for exact multi-label classification. In: NeurIPS, vol. 34, pp. 15981–15992 (2021)

    Google Scholar 

  11. Hang, J.Y., Zhang, M.L.: Collaborative learning of label semantics and deep label-specific features for multi-label classification. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 9860–9871 (2021)

    Article  Google Scholar 

  12. Hang, J.Y., Zhang, M.L.: Dual perspective of label-specific feature learning for multi-label classification. In: ICML, pp. 8375–8386 (2022)

    Google Scholar 

  13. Hang, J.Y., Zhang, M.L., Feng, Y., Song, X.: End-to-end probabilistic label-specific feature learning for multi-label classification. In: AAAI, vol. 36, pp. 6847–6855 (2022)

    Google Scholar 

  14. Huang, Y., et al.: Improving face recognition from hard samples via distribution distillation loss. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 138–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_9

    Chapter  Google Scholar 

  15. Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: MLSMOTE: approaching imbalanced multilabel learning through synthetic instance generation. Knowl.-Based Syst. 89, 385–397 (2015)

    Article  Google Scholar 

  16. Pereira, R.M., Costa, Y.M., Silla, C.N., Jr.: MLTL: a multi-label approach for the tomek link undersampling algorithm. Neurocomputing 383, 95–105 (2020)

    Article  Google Scholar 

  17. Zhang, Y., Kang, B., Hooi, B., Yan, S., Feng, J.: Deep long-tailed learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45(9), 10795–10816 (2023)

    Article  Google Scholar 

  18. Jiang, T., Wang, D., Sun, L., Yang, H., Zhao, Z., Zhuang, F.: Lightxml: transformer with dynamic negative sampling for high-performance extreme multi-label text classification. In: AAAI, pp. 7987–7994 (2021)

    Google Scholar 

  19. Katharopoulos, A., Fleuret, F.: Not all samples are created equal: deep learning with importance sampling. In: ICML, pp. 2525–2534 (2018)

    Google Scholar 

  20. Liu, B., Blekas, K., Tsoumakas, G.: Multi-label sampling based on local label imbalance. Pattern Recogn. 122, 108–294 (2022)

    Article  Google Scholar 

  21. Liu, B., Tsoumakas, G.: Dealing with class imbalance in classifier chains via random undersampling. Knowl.-Based Syst. 192, 105–292 (2020)

    Article  Google Scholar 

  22. Liu, W., Wang, H., Shen, X., Tsang, I.W.: The emerging trends of multi-label learning. IEEE Trans. Pattern Anal. Mach. Intell. 44(11), 7955–7974 (2021)

    Article  Google Scholar 

  23. Liu, Y., et al.: Hard sample aware network for contrastive deep graph clustering. In: AAAI, vol. 37, pp. 8914–8922 (2023)

    Google Scholar 

  24. Loshchilov, I., Hutter, F.: Online batch selection for faster training of neural networks. In: ICLR Workshop (2016)

    Google Scholar 

  25. Nguyen, H.D., Vu, X.S., Le, D.T.: Modular graph transformer networks for multi-label image classification. In: AAAI, pp. 9092–9100 (2021)

    Google Scholar 

  26. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85, 333–359 (2011)

    Article  MathSciNet  Google Scholar 

  27. Ridnik, T., et al.: Asymmetric loss for multi-label classification. In: CVPR, pp. 82–91 (2021)

    Google Scholar 

  28. Sechidis, K., Tsoumakas, G., Vlahavas, I.: On the stratification of multi-label data. In: ECML-PKDD, pp. 145–158 (2011)

    Google Scholar 

  29. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: CVPR, pp. 761–769 (2016)

    Google Scholar 

  30. Song, H., Kim, M., Kim, S., Lee, J.G.: Carpe diem, seize the samples uncertain “at the moment” for adaptive batch selection. In: CIKM, pp. 1385–1394 (2020)

    Google Scholar 

  31. Song, H., Kim, S., Kim, M., Lee, J.G.: Ada-boundary: accelerating DNN training via adaptive boundary batch selection. Mach. Learn. 109, 1837–1853 (2020)

    Article  MathSciNet  Google Scholar 

  32. Tarekegn, A.N., Giacobini, M., Michalak, K.: A review of methods for imbalanced multi-label classification. Pattern Recogn. 118, 107–125 (2021)

    Article  Google Scholar 

  33. Teng, Z., Cao, P., Huang, M., Gao, Z., Wang, X.: Multi-label borderline oversampling technique. Pattern Recogn. 145, 109–123 (2024)

    Article  Google Scholar 

  34. Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., Vlahavas, I.: Mulan: a java library for multi-label learning. J. Mach. Learn. Res. 12, 2411–2414 (2011)

    MathSciNet  Google Scholar 

  35. Tsoumakas, G., Vlahavas, I.: Random k-labelsets: an ensemble method for multilabel classification. In: ECML, pp. 406–417 (2007)

    Google Scholar 

  36. Yeh, C.K., Wu, W.C., Ko, W.J., Wang, Y.C.F.: Learning deep latent space for multi-label classification. In: AAAI, vol. 31 (2017)

    Google Scholar 

  37. Zhang, K., et al.: Label correlation guided borderline oversampling for imbalanced multi-label data learning. Knowl.-Based Syst. 279, 110–138 (2023)

    Article  Google Scholar 

  38. Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338–1351 (2006)

    Article  Google Scholar 

  39. Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)

    Article  Google Scholar 

  40. Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2013)

    Article  Google Scholar 

  41. Zhao, W., Kong, S., Bai, J., Fink, D., Gomes, C.: Hot-VAE: learning high-order label correlation for multi-label classification via attention-based variational autoencoders. In: AAAI, vol. 35, pp. 15016–15024 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (62302074) and the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202300631).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, A., Liu, B., Peng, Z., Wang, J., Tsoumakas, G. (2024). Multi-label Adaptive Batch Selection by Highlighting Hard and Imbalanced Samples. In: Bifet, A., Davis, J., Krilavičius, T., Kull, M., Ntoutsi, E., Žliobaitė, I. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14945. Springer, Cham. https://doi.org/10.1007/978-3-031-70362-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70362-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70361-4

  • Online ISBN: 978-3-031-70362-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics