AEMLO: AutoEncoder-Guided Multi-label Oversampling | SpringerLink
Skip to main content

AEMLO: AutoEncoder-Guided Multi-label Oversampling

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14941))

  • 683 Accesses

Abstract

Class imbalance significantly impacts the performance of multi-label classifiers. Oversampling is one of the most popular approaches, as it augments instances associated with less frequent labels to balance the class distribution. Existing oversampling methods generate feature vectors of synthetic samples through replication or linear interpolation and assign labels through neighborhood information. Linear interpolation typically generates new samples between existing data points, which may result in insufficient diversity of synthesized samples and further lead to the overfitting issue. Deep learning-based methods, such as AutoEncoders, have been proposed to generate more diverse and complex synthetic samples, achieving excellent performance on imbalanced binary or multi-class datasets. In this study, we introduce AEMLO, an AutoEncoder-guided Oversampling technique specifically designed for tackling imbalanced multi-label data. AEMLO is built upon two fundamental components. The first is an encoder-decoder architecture that enables the model to encode input data into a low-dimensional feature space, learn its latent representations, and then reconstruct it back to its original dimension, thus applying to the generation of new data. The second is an objective function tailored to optimize the sampling task for multi-label scenarios. We show that AEMLO outperforms the existing state-of-the-art methods with extensive empirical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Here, 10 is a hyperparameter. We refer to the suggestions in [29] for the selection.

References

  1. Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep canonical correlation analysis. In: International Conference on Machine Learning, pp. 1247–1255. PMLR (2013)

    Google Scholar 

  2. Bellinger, C., Drummond, C., Japkowicz, N.: Manifold-based synthetic oversampling with manifold conformance estimation. Mach. Learn. 107, 605–637 (2018)

    Article  MathSciNet  Google Scholar 

  3. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)

    Article  Google Scholar 

  4. Cabral, R., Torre, F., Costeira, J.P., Bernardino, A.: Matrix completion for multi-label image classification. In: Advances in Neural Information Processing Systems, vol. 24 (2011)

    Google Scholar 

  5. Charte, F., Rivera, A., del Jesus, M.J., Herrera, F.: Resampling multilabel datasets by decoupling highly imbalanced labels. In: Onieva, E., Santos, I., Osaba, E., Quintián, H., Corchado, E. (eds.) HAIS 2015. LNCS (LNAI), vol. 9121, pp. 489–501. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19644-2_41

    Chapter  Google Scholar 

  6. Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: Mlsmote: approaching imbalanced multilabel learning through synthetic instance generation. Knowl.-Based Syst. 89, 385–397 (2015)

    Article  Google Scholar 

  7. Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: REMEDIAL-HwR: tackling multilabel imbalance through label decoupling and data resampling hybridization. Neurocomputing 326, 110–122 (2019)

    Article  Google Scholar 

  8. Dablain, D., Krawczyk, B., Chawla, N.V.: Deepsmote: fusing deep learning and smote for imbalanced data. IEEE Trans. Neural Netw. Learn. Syst. 34(9), 6390–6404 (2022)

    Article  Google Scholar 

  9. Daniels, Z., Metaxas, D.: Addressing imbalance in multi-label classification using structured hellinger forests. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  10. Fajardo, V.A., et al.: On oversampling imbalanced data with deep conditional generative models. Expert Syst. Appl. 169, 114463 (2021)

    Article  Google Scholar 

  11. Fürnkranz, J., Hüllermeier, E., Loza Mencía, E., Brinker, K.: Multilabel classification via calibrated label ranking. Mach. Learn. 73, 133–153 (2008)

    Article  Google Scholar 

  12. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  13. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Google Scholar 

  14. Jiang, T., Wang, D., Sun, L., Yang, H., Zhao, Z., Zhuang, F.: Lightxml: transformer with dynamic negative sampling for high-performance extreme multi-label text classification. In: AAAI, pp. 7987–7994 (2021)

    Google Scholar 

  15. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  16. Liang, J., Phan, H., Benetos, E.: Learning from taxonomy: multi-label few-shot classification for everyday sound recognition. In: ICASSP, pp. 771–775. IEEE (2024)

    Google Scholar 

  17. Liu, B., Blekas, K., Tsoumakas, G.: Multi-label sampling based on local label imbalance. Pattern Recogn. 122, 108294 (2022)

    Article  Google Scholar 

  18. Liu, B., Tsoumakas, G.: Making classifier chains resilient to class imbalance. In: Asian Conference on Machine Learning, pp. 280–295. PMLR (2018)

    Google Scholar 

  19. Mariani, G., Scheidegger, F., Istrate, R., Bekas, C., Malossi, C.: Bagan: data augmentation with balancing GAN. In: International Conference on Machine Learning (2018)

    Google Scholar 

  20. Mullick, S.S., Datta, S., Das, S.: Generative adversarial minority oversampling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1695–1704 (2019)

    Google Scholar 

  21. Pereira, R.M., Costa, Y.M., Silla, C.N., Jr.: MLTL: a multi-label approach for the tomek link undersampling algorithm. Neurocomputing 383, 95–105 (2020)

    Article  Google Scholar 

  22. Razavi, A., Van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with VQ-VAE-2. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  23. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS (LNAI), vol. 5782, pp. 254–269. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04174-7_17

    Chapter  Google Scholar 

  24. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85, 333–359 (2011)

    Article  MathSciNet  Google Scholar 

  25. Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: Addressing imbalance in multilabel classification: measures and random resampling algorithms. Neurocomputing 163, 3–16 (2015)

    Article  Google Scholar 

  26. Sechidis, K., Tsoumakas, G., Vlahavas, I.: On the stratification of multi-label data. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6913, pp. 145–158. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23808-6_10

    Chapter  Google Scholar 

  27. Tahir, M.A., Kittler, J., Bouridane, A.: Multilabel classification using heterogeneous ensemble of multi-label classifiers. Pattern Recogn. Lett. 33(5), 513–523 (2012)

    Article  Google Scholar 

  28. Tarekegn, A.N., Giacobini, M., Michalak, K.: A review of methods for imbalanced multi-label classification. Pattern Recogn. 118, 107965 (2021)

    Article  Google Scholar 

  29. Teng, Z., Cao, P., Huang, M., Gao, Z., Wang, X.: Multi-label borderline oversampling technique. Pattern Recogn. 145, 109953 (2024)

    Article  Google Scholar 

  30. Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., Vlahavas, I.: Mulan: a java library for multi-label learning. J. Mach. Learn. Res. 12, 2411–2414 (2011)

    MathSciNet  Google Scholar 

  31. Tsoumakas, G., Vlahavas, I.: Random k-labelsets: an ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74958-5_38

    Chapter  Google Scholar 

  32. Zhang, M.L., Li, Y.K., Yang, H., Liu, X.Y.: Towards class-imbalance aware multi-label learning. IEEE Trans. Cybern. 52(6), 4459–4471 (2020)

    Article  Google Scholar 

  33. Zhang, M.L.: ML-rbf: RBF neural networks for multi-label learning. Neural Process. Lett. 29, 61–74 (2009)

    Article  Google Scholar 

  34. Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338–1351 (2006)

    Article  Google Scholar 

  35. Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)

    Article  Google Scholar 

  36. Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2013)

    Article  Google Scholar 

  37. Zhu, B., Pan, X., vanden Broucke, S., Xiao, J.: A GAN-based hybrid sampling method for imbalanced customer classification. Inf. Sci. 609, 1397–1411 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (62302074) and the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202300631).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, A., Liu, B., Wang, J., Sun, K., Liu, K. (2024). AEMLO: AutoEncoder-Guided Multi-label Oversampling. In: Bifet, A., Davis, J., Krilavičius, T., Kull, M., Ntoutsi, E., Žliobaitė, I. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14941. Springer, Cham. https://doi.org/10.1007/978-3-031-70341-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70341-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70340-9

  • Online ISBN: 978-3-031-70341-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics