An Adaptive Interpretable Safe-RL Approach for Addressing Smart Grid Supply-Side Uncertainties | SpringerLink
Skip to main content

An Adaptive Interpretable Safe-RL Approach for Addressing Smart Grid Supply-Side Uncertainties

  • Conference paper
  • First Online:
Explainable and Transparent AI and Multi-Agent Systems (EXTRAAMAS 2024)

Abstract

Integration of large-scale renewable energy sources is the future of smart grids. However, weather conditions significantly affect the generation of renewable energy sources, which causes supply-side uncertainties. Even with the current state-of-the-art technologies, weather conditions, solar radiance, etc., can be predicted nearly accurately, only a few minutes early. Existing intelligent grid optimization methods used to solve Optimal Power Flow (OPF) consider day-ahead planning for congestion management and generator rescheduling. Current OPF-based methods suffer many drawbacks for the large grid, like longer computation time and local convergence issues, and are computationally expensive. This drawback makes existing OPF methods unsuitable for the congestion management problem when considering supply-side uncertainties, mainly due to the large-scale integration of renewable energy sources. Over the years, Reinforcement Learning (RL) methods have gained popularity for solving constrained optimization tasks at scale. However, even if the existing Deep-RL (DRL) based policies perform best for large and complex tasks, the lack of interpretability due to using deep neural networks at their core makes them not a trustworthy solution when safety constraints like congestion-free operation are considered. Therefore, to ensure that DRL policies are used safely in critical infrastructures like smart grids, this paper proposes a centralized barrier-penalty-based DRL method that utilizes the Adaptive Safety Shield framework as an extra layer of safety. The DRL-based policy is trained to find the economically optimal grid state while considering the barrier penalty value to reduce branch loads. Besides, the Adaptive Safety Shield is trained to learn the congestion criteria and guide the RL in avoiding such scenarios during exploration. We have also empirically shown that the proposed method has demonstrated similar or better performance than the current OPF-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbeel, P., Coates, A., Ng, A.Y.: Autonomous helicopter aerobatics through apprenticeship learning. Int. J. Robot. Res. (IJRR) 29 (2010)

    Google Scholar 

  2. Achiam, J., Held, D., Tamar, A., Abbeel, P.: Constrained policy optimization. In: International Conference on Machine Learning (2017)

    Google Scholar 

  3. Alazemi, T., Darwish, M., Radi, M.: Renewable energy sources integration via machine learning modelling: a systematic literature review. Heliyon 10(4), e26088 (2024). https://doi.org/10.1016/j.heliyon.2024.e26088

    Article  Google Scholar 

  4. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe reinforcement learning via shielding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  5. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Concrete problems in AI safety. arXiv preprint arXiv:1606.06565 (2016)

  6. Berkenkamp, F., Moriconi, R., Schoellig, A.P., Krause, A.: Safe learning of regions of attraction for uncertain, nonlinear systems with Gaussian processes. In: 2016 IEEE 55th Conference on Decision and Control. CDC 2016, pp. 4661–4666 (2016). https://doi.org/10.1109/CDC.2016.7798979

  7. Bhattacharya, K., Bollen, M., E. Daalder, J.: Operation of Restructured Power Systems (2001). https://doi.org/10.1007/978-1-4615-1465-7

  8. Center, S.L.D.: Power maps all regions 2013. https://www.coursehero.com/file/65794401/Power-maps-All-Regions-2013pdf/

  9. Chow, Y., Nachum, O., Duenez-Guzman, E., Ghavamzadeh, M.: A Lyapunov-based approach to safe reinforcement learning. arXiv preprint arXiv:1805.07708 (2018)

  10. Christie, R.D., Wollenberg, B.F., Wangensteen, I.: Transmission management in the deregulated environment. Proc. IEEE 88(2), 170–195 (2000)

    Article  Google Scholar 

  11. Dey, S., Dasgupta, P., Gangopadhyay, B.: Safety augmentation in decision trees. In: Proceedings of the Workshop on Artificial Intelligence Safety 2020 co-located with the 29th International Joint Conference on Artificial Intelligence and the 17th Pacific Rim International Conference on Artificial Intelligence (IJCAI-PRICAI 2020), Yokohama, Japan, January 2021. CEUR Workshop Proceedings, vol. 2640. CEUR-WS.org (2020)

    Google Scholar 

  12. Dey, S., Mujumdar, A., Dasgupta, P., Dey, S.: Adaptive safety shields for reinforcement learning-based cell shaping. IEEE Trans. Netw. Serv. Manag. 19(4), 5034–5043 (2022). https://doi.org/10.1109/TNSM.2022.3194566

    Article  Google Scholar 

  13. Di Castro, D., Tamar, A., Mannor, S.: Policy gradients with variance related risk criteria. arXiv preprint arXiv:1206.6404 (2012)

  14. Elsaraiti, M., Merabet, A.: Solar power forecasting using deep learning techniques. IEEE Access 10, 31692–31698 (2022)

    Article  Google Scholar 

  15. Esfahani, M.M., Yousefi, G.R.: Real time congestion management in power systems considering quasi-dynamic thermal rating and congestion clearing time. IEEE Trans. Industr. Inf. 12(2), 745–754 (2016)

    Article  Google Scholar 

  16. Feghhi, S., Aumayr, E., Vannella, F., Hakim, E.A., Iakovidis, G.: Safe reinforcement learning for antenna tilt optimisation using shielding and multiple baselines. arXiv preprint arXiv:2012.01296 (2020)

  17. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: toward safe control through proof and learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  18. Garcıa, J., Fernández, F.: A comprehensive survey on safe reinforcement learning. J. Mach. Learn. Res. 16(1), 1437–1480 (2015)

    MathSciNet  Google Scholar 

  19. Geibel, P., Wysotzki, F.: Risk-sensitive reinforcement learning applied to control under constraints. J. Artif. Intell. Res. 24, 81–108 (2005). https://doi.org/10.1613/jair.1666

  20. Glavic, M., Fonteneau, R., Ernst, D.: Reinforcement learning for electric power system decision and control: past considerations and perspectives. IFAC-PapersOnLine 50(1), 6918–6927 (2017). https://doi.org/10.1016/j.ifacol.2017.08.1217, 20th IFAC World Congress

  21. HUB, E.S.: Photovoltaic geographical information system (pvgis) (2019). https://ec.europa.eu/jrc/en/pvgis

  22. Imthias Ahamed, T., Nagendra Rao, P., Sastry, P.: A reinforcement learning approach to automatic generation control. Electr. Power Syst. Res. 63(1), 9–26 (2002). https://doi.org/10.1016/S0378-7796(02)00088-3

    Article  Google Scholar 

  23. Government of India, M.o.N., Energy, R.: Current status: Ministry of new and renewable energy, Government of India. https://mnre.gov.in/solar/current-status/

  24. Liu, Z., et al.: Artificial intelligence powered large-scale renewable integrations in multi-energy systems for carbon neutrality transition: challenges and future perspectives. Energy AI 10, 100195 (2022). https://doi.org/10.1016/j.egyai.2022.100195

  25. Maiti, S., Balabhaskara, A., Adhikary, S., Koley, I., Dey, S.: Targeted attack synthesis for smart grid vulnerability analysis. In: Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, pp. 2576–2590 (2023)

    Google Scholar 

  26. Mnih, V., et al.: Playing Atari with deep reinforcement learning. arXiv abs/1312.5602 (2013)

    Google Scholar 

  27. van Otterlo, M., Wiering, M.A.: Markov Decision Processes: Concepts and Algorithms (2012)

    Google Scholar 

  28. Perkins, T.J., Barto, A.G.: Lyapunov design for safe reinforcement learning. J. Mach. Learn. Res. 3(Dec), 803–832 (2002)

    Google Scholar 

  29. Ray, A., Achiam, J., Amodei, D.: Benchmarking Safe Exploration in Deep Reinforcement Learning (2019)

    Google Scholar 

  30. Stott, B., Alsac, O., Monticelli, A.J.: Security analysis and optimization. Proc. IEEE 75(12), 1623–1644 (1987)

    Article  Google Scholar 

  31. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (2018)

    Google Scholar 

  32. Sutton, R.S., Barto, A.G., et al.: Introduction to Reinforcement Learning, vol. 135. MIT Press, Cambridge (1998)

    Google Scholar 

  33. Talukdar, B., Sinha, A., Mukhopadhyay, S., Bose, A.: A computationally simple method for cost-efficient generation rescheduling and load shedding for congestion management. Int. J. Electric. Power Energy Syst. 27(5–6), 379–388 (2005)

    Article  Google Scholar 

  34. Verma, P., Dasgupta, P., Chakraborty, C.: Ml-assisted real time congestion mitigation under supply-side uncertainties. In: 2021 IEEE PES Innovative Smart Grid Technologies - Asia (ISGT Asia), pp. 1–5 (2021). https://doi.org/10.1109/ISGTAsia49270.2021.9715620

  35. Vlachogiannis, J., Hatziargyriou, N.: Reinforcement learning for reactive power control. IEEE Trans. Power Syst. 19(3), 1317–1325 (2004). https://doi.org/10.1109/TPWRS.2004.831259

    Article  Google Scholar 

  36. Xu, Y., Zhang, W., Liu, W., Ferrese, F.: Multiagent-based reinforcement learning for optimal reactive power dispatch. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 1742–1751 (2012). https://doi.org/10.1109/TSMCC.2012.2218596

  37. Yu, T., Zhou, B., Chan, K.W., Yuan, Y., Yang, B., Wu, Q.H.: R(\(\lambda \)) imitation learning for automatic generation control of interconnected power grids. Automatica 48(9), 2130–2136 (2012). https://doi.org/10.1016/j.automatica.2012.05.043

  38. Yu, T., Zhou, B., Chan, K.W., Chen, L., Yang, B.: Stochastic optimal relaxed automatic generation control in non-Markov environment based on multi-step q(\(\lambda \)) learning. IEEE Trans. Power Syst. 26(3), 1272–1282 (2011). https://doi.org/10.1109/TPWRS.2010.2102372

    Article  Google Scholar 

  39. Zarrabian, S., Belkacemi, R., Babalola, A.A.: Reinforcement learning approach for congestion management and cascading failure prevention with experimental application. Electr. Power Syst. Res. 141(C), 179–190 (2016). https://doi.org/10.1016/j.epsr.2016.06.041

  40. Zhao, N., You, F.: Sustainable power systems operations under renewable energy induced disjunctive uncertainties via machine learning-based robust optimization. Renew. Sustain. Energy Rev. 161, 112428 (2022). https://doi.org/10.1016/j.rser.2022.112428

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dey, S., Verma, P., Dasgupta, P., Dey, S. (2024). An Adaptive Interpretable Safe-RL Approach for Addressing Smart Grid Supply-Side Uncertainties. In: Calvaresi, D., et al. Explainable and Transparent AI and Multi-Agent Systems. EXTRAAMAS 2024. Lecture Notes in Computer Science(), vol 14847. Springer, Cham. https://doi.org/10.1007/978-3-031-70074-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70074-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70073-6

  • Online ISBN: 978-3-031-70074-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics