Abstract
Existing agent-based chatbot frameworks need seamless mechanisms to include explainable dialogic engines within the contextual flow. To this end, this paper presents a set of novel modules within the EREBOTS agent-based framework for chatbot development, including dialog-based plug-and-play custom algorithms, agnostic back/front ends, and embedded interactive explainable engines that can manage human feedback at run time. The framework has been employed to implement an explainable agent-based interactive food recommender system. The latter has been tested with 44 participants, who followed a nutrition recommendation interaction series, generating explained recommendations and suggestions, which were, in general, well received. Additionally, the participants provided important insights to be included in future work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
References
Adamopoulou, E., Moussiades, L.: An overview of chatbot technology, pp. 373–383 (2020). https://doi.org/10.1007/978-3-030-49186-4_31
Anjomshoae, S., Najjar, A., Calvaresi, D., Främling, K.: Explainable agents and robots: results from a systematic literature review. In: AAMAS, Montreal, Canada, 13–17 May 2019, pp. 1078–1088 (2019)
Arsenijevic, U., Jovic, M.: Artificial intelligence marketing: chatbots. In: 2019 International Conference on Artificial Intelligence: Applications and Innovations (IC-AIAI), pp. 19–193 (2019). https://doi.org/10.1109/IC-AIAI48757.2019.00010
AWS, A.: Amazon lex. https://aws.amazon.com/lex/. Accessed Mar 2024
Aydoğan, R., Jonker, C.M.: A survey of decision support mechanisms for negotiation. In: Hadfi, R., Aydoğan, R., Ito, T., Arisaka, R. (eds.) Recent Advances in Agent-Based Negotiation: Applications and Competition Challenges, pp. 30–51. Springer Nature Singapore, Singapore (2023). https://doi.org/10.1007/978-981-99-0561-4_3
Ayub, M., Ghazanfar, M.A., Maqsood, M., Saleem, A.: A Jaccard base similarity measure to improve performance of CF based recommender systems, pp. 1–6 (2018)
Bondevik, J.N., Bennin, K.E., Önder Babur, Ersch, C.: A systematic review on food recommender systems. Expert Syst. Appl. 238, 122166 (2024). https://doi.org/10.1016/j.eswa.2023.122166, https://www.sciencedirect.com/science/article/pii/S0957417423026684
Buzcu, B., et al.: Towards interactive explanation-based nutrition virtual coaching systems. Auton. Agent. Multi-Agent Syst. 38(1), 5 (2024). https://doi.org/10.1007/s10458-023-09634-5
Calvaresi, D., et al.: EREBOTS: privacy-compliant agent-based platform for multi-scenario personalized health-assistant chatbots. Electronics 10(6) (2021). https://doi.org/10.3390/electronics10060666, https://www.mdpi.com/2079-9292/10/6/666
Calvaresi, D., et al.: Ethical and legal considerations for nutrition virtual coaches. AI and ethics 3(4), 1313–1340 (2023)
Calvaresi, D., et al.: Expectation: personalized explainable artificial intelligence for decentralized agents with heterogeneous knowledge. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds.) EXTRAAMAS 2021. LNCS (LNAI), vol. 12688, pp. 331–343. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-82017-6_20
Calvaresi, D., Eggenschwiler, S., Calbimonte, J.P., Manzo, G., Schumacher, M.: A personalized agent-based chatbot for nutritional coaching. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, pp. 682–687. WI-IAT 2021, Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3486622.3493992, https://doi.org/10.1145/3486622.3493992
Chung, K., Park, R.C.: Chatbot-based heathcare service with a knowledge base for cloud computing. Cluster Comput. 22(1), 1925–1937 (2018). https://doi.org/10.1007/s10586-018-2334-5
Contreras, V., et al.: A dexire for extracting propositional rules from neural networks via binarization. Electronics 11(24) (2022). https://doi.org/10.3390/electronics11244171, https://www.mdpi.com/2079-9292/11/24/4171
Felfernig, A., Burke, R.: Constraint-based recommender systems: echnologies and research issues. In: ACM International Conference Proceeding Series, p. 3 (2008). https://doi.org/10.1145/1409540.1409544
Følstad, A., Nordheim, C.B., Bjørkli, C.A.: What makes users trust a chatbot for customer service? an exploratory interview study. In: Bodrunova, S.S. (ed.) INSCI 2018. LNCS, vol. 11193, pp. 194–208. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01437-7_16
Freyne, J., Berkovsky, S.: Intelligent food planning: personalized recipe recommendation. In: Proceedings of the 15th International Conference on Intelligent User Interfaces, pp. 321–324. IUI 2010, Association for Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1719970.1720021
Google: Google dialogflow. https://www.citedrive.com/overleaf. Accessed Mar 2024
Harbola, A.: Design and implementation of an AI chatbot for customer service. Math. Stat. Eng. Appl. 70, 1295–1303 (2021). https://doi.org/10.17762/msea.v70i2.2321
Hoffman, R.R., Mueller, S.T., Klein, G., Litman, o.: Metrics for explainable AI: challenges and prospects. arXiv:1812.04608 (2018)
Hulstijn, J., Tchappi, I., Najjar, A., Aydoğan, R.: Metrics for evaluating explainable recommender systems. In: AAMAS, EXTRAAMAS 2023, London, England, 29 May 2023. Springer (2023). https://doi.org/10.1007/978-3-031-40878-6_12
Belen Saglam, R., Nurse, J.R.C., Hodges, D.: Privacy concerns in chatbot interactions: when to trust and when to worry. In: Stephanidis, C., Antona, M., Ntoa, S. (eds.) HCII 2021. CCIS, vol. 1420, pp. 391–399. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78642-7_53
Lee, H., Kang, J., Yeo, J.: Medical specialty recommendations by an artificial intelligence chatbot on a smartphone: development and deployment (preprint). J. Med. Internet Res. 23 (2021). https://doi.org/10.2196/27460
Magnini, M., Ciatto, G., Omicini, A.: On the design of PSyKI: a platform for symbolic knowledge injection into sub-symbolic predictors. In: Explainable and Transparent AI and Multi-Agent Systems: 4th International Workshop, EXTRAAMAS 2022, Virtual Event, 9–10 May 2022, Revised Selected Papers, pp. 90–108. Springer-Verlag, Berlin, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15565-9_6
Majumder, B.P., Li, S., Ni, J., McAuley, J.J.: Generating personalized recipes from historical user preferences. CoRR abs/1909.00105 arXiv:1909.00105 (2019)
Mendes Samagaio, Á., Lopes Cardoso, H., Ribeiro, D.: A Chatbot for recipe recommendation and preference modeling. In: Marreiros, G., Melo, F.S., Lau, N., Lopes Cardoso, H., Reis, L.P. (eds.) EPIA 2021. LNCS (LNAI), vol. 12981, pp. 389–402. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86230-5_31
Meyer, J.G., et al.: ChatGpt and large language models in academia: opportunities and challenges. BioData Min. 16(1), 20 (2023). https://doi.org/10.1186/s13040-023-00339-9
Montagna, S., Mariani, S., Pengo, M.F.: A chatbot-based recommendation framework for hypertensive patients. In: 2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS), pp. 730–733 (2023). https://doi.org/10.1109/CBMS58004.2023.00309
Nadarzynski, T., Miles, O., Cowie, A., Ridge, D.: Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: a mixed-methods study. Digital Health 5, 2055207619871808 (2019). https://doi.org/10.1177/2055207619871808, pMID: 31467682
OpenAI: Chatgpt. https://chat.openai.com/. ADccessed Mar 2024
Ornab, A.M., Chowdhury, S., Toa, S.B.: An empirical analysis of collaborative filtering algorithms for building a food recommender system. In: Jain, L.C., E. Balas, V., Johri, P. (eds.) Data and Communication Networks. AISC, vol. 847, pp. 147–157. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-2254-9_13
Prasetyo, P.K., Achananuparp, P., Lim, E.P.: Foodbot: a goal-oriented just-in-time healthy eating interventions chatbot. In: Proceedings of the 14th EAI International Conference on Pervasive Computing Technologies for Healthcare, p. 436–439. PervasiveHealth 2020, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3421937.3421960
Shinde, N.V., Akhade, A., Bagad, P., Bhavsar, H., Wagh, S., Kamble, A.: Healthcare Chatbot system using artificial intelligence. In: 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI), pp. 1–8 (2021). https://doi.org/10.1109/ICOEI51242.2021.9452902
Singh, J., Joesph, M., Abdul Jabbar, K.: Rule-based Chabot for student enquiries. J. Phys. Conf. Ser. 1228, 012060 (2019). https://doi.org/10.1088/1742-6596/1228/1/012060
Singh, S., Beniwal, H.: A survey on near-human conversational agents. J. King Saud Univ. Comput. Inform. Sci. 34 (2021). https://doi.org/10.1016/j.jksuci.2021.10.013
Teng, C.Y., Lin, Y.R., Adamic, L.A.: Recipe recommendation using ingredient networks. In: Proceedings of the 4th Annual ACM Web Science Conference, pp. 298–307. WebSci 2012, Association for Computing Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2380718.2380757
Thongyoo, P., Anantapanya, P., Jamsri, P., Chotipant, S.: A personalized food recommendation chatbot system for diabetes patients. In: Luo, Y. (ed.) CDVE 2020. LNCS, vol. 12341, pp. 19–28. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60816-3_3
van der Waa, J., Nieuwburg, E., Cremers, A., Neerincx, M.: Evaluating XAI: a comparison of rule-based and example-based explanations. Artif. Intell. 291, 103404 (2021)
Wei, C., Yu, Z., Fong, S.: How to build a chatbot: chatbot framework and its capabilities. In: Proceedings of the 2018 10th International Conference on Machine Learning and Computing, p. 369–373. ICMLC 2018, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3195106.3195169, https://doi.org/10.1145/3195106.3195169
Acknowledgments
This work has been supported by the Chist-Era grant CHIST-ERA-19-XAI-005, and by (i) the Swiss National Science Foundation (G.A. 20CH21_195530), and (ii) the Scientific and Research Council of Turkey (TÜBİTAK, G.A. 120N680).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Buzcu, B., Pannatier, Y., Aydoğan, R., Ignaz Schumacher, M., Calbimonte, JP., Calvaresi, D. (2024). A Framework for Explainable Multi-purpose Virtual Assistants: A Nutrition-Focused Case Study. In: Calvaresi, D., et al. Explainable and Transparent AI and Multi-Agent Systems. EXTRAAMAS 2024. Lecture Notes in Computer Science(), vol 14847. Springer, Cham. https://doi.org/10.1007/978-3-031-70074-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-70074-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70073-6
Online ISBN: 978-3-031-70074-3
eBook Packages: Computer ScienceComputer Science (R0)