A Framework for Explainable Multi-purpose Virtual Assistants: A Nutrition-Focused Case Study | SpringerLink
Skip to main content

A Framework for Explainable Multi-purpose Virtual Assistants: A Nutrition-Focused Case Study

  • Conference paper
  • First Online:
Explainable and Transparent AI and Multi-Agent Systems (EXTRAAMAS 2024)

Abstract

Existing agent-based chatbot frameworks need seamless mechanisms to include explainable dialogic engines within the contextual flow. To this end, this paper presents a set of novel modules within the EREBOTS agent-based framework for chatbot development, including dialog-based plug-and-play custom algorithms, agnostic back/front ends, and embedded interactive explainable engines that can manage human feedback at run time. The framework has been employed to implement an explainable agent-based interactive food recommender system. The latter has been tested with 44 participants, who followed a nutrition recommendation interaction series, generating explained recommendations and suggestions, which were, in general, well received. Additionally, the participants provided important insights to be included in future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://flutter.dev/.

  2. 2.

    https://docs.docker.com/compose/.

  3. 3.

    https://www.pryv.com/.

  4. 4.

    https://www.mongodb.com/.

  5. 5.

    https://www.igniterealtime.org/projects/openfire/.

  6. 6.

    https://github.com/javipalanca/spade.

  7. 7.

    https://www.enzuzo.com/.

  8. 8.

    https://www.mysql.com/.

  9. 9.

    https://prosody.im/.

  10. 10.

    https://telegram.org/.

  11. 11.

    https://cdn.openai.com/papers/gpt-4.pdf.

  12. 12.

    https://www.pryv.com/.

References

  1. Adamopoulou, E., Moussiades, L.: An overview of chatbot technology, pp. 373–383 (2020). https://doi.org/10.1007/978-3-030-49186-4_31

  2. Anjomshoae, S., Najjar, A., Calvaresi, D., Främling, K.: Explainable agents and robots: results from a systematic literature review. In: AAMAS, Montreal, Canada, 13–17 May 2019, pp. 1078–1088 (2019)

    Google Scholar 

  3. Arsenijevic, U., Jovic, M.: Artificial intelligence marketing: chatbots. In: 2019 International Conference on Artificial Intelligence: Applications and Innovations (IC-AIAI), pp. 19–193 (2019). https://doi.org/10.1109/IC-AIAI48757.2019.00010

  4. AWS, A.: Amazon lex. https://aws.amazon.com/lex/. Accessed Mar 2024

  5. Aydoğan, R., Jonker, C.M.: A survey of decision support mechanisms for negotiation. In: Hadfi, R., Aydoğan, R., Ito, T., Arisaka, R. (eds.) Recent Advances in Agent-Based Negotiation: Applications and Competition Challenges, pp. 30–51. Springer Nature Singapore, Singapore (2023). https://doi.org/10.1007/978-981-99-0561-4_3

    Chapter  Google Scholar 

  6. Ayub, M., Ghazanfar, M.A., Maqsood, M., Saleem, A.: A Jaccard base similarity measure to improve performance of CF based recommender systems, pp. 1–6 (2018)

    Google Scholar 

  7. Bondevik, J.N., Bennin, K.E., Önder Babur, Ersch, C.: A systematic review on food recommender systems. Expert Syst. Appl. 238, 122166 (2024). https://doi.org/10.1016/j.eswa.2023.122166, https://www.sciencedirect.com/science/article/pii/S0957417423026684

  8. Buzcu, B., et al.: Towards interactive explanation-based nutrition virtual coaching systems. Auton. Agent. Multi-Agent Syst. 38(1), 5 (2024). https://doi.org/10.1007/s10458-023-09634-5

    Article  Google Scholar 

  9. Calvaresi, D., et al.: EREBOTS: privacy-compliant agent-based platform for multi-scenario personalized health-assistant chatbots. Electronics 10(6) (2021). https://doi.org/10.3390/electronics10060666, https://www.mdpi.com/2079-9292/10/6/666

  10. Calvaresi, D., et al.: Ethical and legal considerations for nutrition virtual coaches. AI and ethics 3(4), 1313–1340 (2023)

    Article  Google Scholar 

  11. Calvaresi, D., et al.: Expectation: personalized explainable artificial intelligence for decentralized agents with heterogeneous knowledge. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds.) EXTRAAMAS 2021. LNCS (LNAI), vol. 12688, pp. 331–343. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-82017-6_20

    Chapter  Google Scholar 

  12. Calvaresi, D., Eggenschwiler, S., Calbimonte, J.P., Manzo, G., Schumacher, M.: A personalized agent-based chatbot for nutritional coaching. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, pp. 682–687. WI-IAT 2021, Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3486622.3493992, https://doi.org/10.1145/3486622.3493992

  13. Chung, K., Park, R.C.: Chatbot-based heathcare service with a knowledge base for cloud computing. Cluster Comput. 22(1), 1925–1937 (2018). https://doi.org/10.1007/s10586-018-2334-5

    Article  Google Scholar 

  14. Contreras, V., et al.: A dexire for extracting propositional rules from neural networks via binarization. Electronics 11(24) (2022). https://doi.org/10.3390/electronics11244171, https://www.mdpi.com/2079-9292/11/24/4171

  15. Felfernig, A., Burke, R.: Constraint-based recommender systems: echnologies and research issues. In: ACM International Conference Proceeding Series, p. 3 (2008). https://doi.org/10.1145/1409540.1409544

  16. Følstad, A., Nordheim, C.B., Bjørkli, C.A.: What makes users trust a chatbot for customer service? an exploratory interview study. In: Bodrunova, S.S. (ed.) INSCI 2018. LNCS, vol. 11193, pp. 194–208. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01437-7_16

    Chapter  Google Scholar 

  17. Freyne, J., Berkovsky, S.: Intelligent food planning: personalized recipe recommendation. In: Proceedings of the 15th International Conference on Intelligent User Interfaces, pp. 321–324. IUI 2010, Association for Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1719970.1720021

  18. Google: Google dialogflow. https://www.citedrive.com/overleaf. Accessed Mar 2024

  19. Harbola, A.: Design and implementation of an AI chatbot for customer service. Math. Stat. Eng. Appl. 70, 1295–1303 (2021). https://doi.org/10.17762/msea.v70i2.2321

  20. Hoffman, R.R., Mueller, S.T., Klein, G., Litman, o.: Metrics for explainable AI: challenges and prospects. arXiv:1812.04608 (2018)

  21. Hulstijn, J., Tchappi, I., Najjar, A., Aydoğan, R.: Metrics for evaluating explainable recommender systems. In: AAMAS, EXTRAAMAS 2023, London, England, 29 May 2023. Springer (2023). https://doi.org/10.1007/978-3-031-40878-6_12

  22. Belen Saglam, R., Nurse, J.R.C., Hodges, D.: Privacy concerns in chatbot interactions: when to trust and when to worry. In: Stephanidis, C., Antona, M., Ntoa, S. (eds.) HCII 2021. CCIS, vol. 1420, pp. 391–399. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78642-7_53

    Chapter  Google Scholar 

  23. Lee, H., Kang, J., Yeo, J.: Medical specialty recommendations by an artificial intelligence chatbot on a smartphone: development and deployment (preprint). J. Med. Internet Res. 23 (2021). https://doi.org/10.2196/27460

  24. Magnini, M., Ciatto, G., Omicini, A.: On the design of PSyKI: a platform for symbolic knowledge injection into sub-symbolic predictors. In: Explainable and Transparent AI and Multi-Agent Systems: 4th International Workshop, EXTRAAMAS 2022, Virtual Event, 9–10 May 2022, Revised Selected Papers, pp. 90–108. Springer-Verlag, Berlin, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15565-9_6

  25. Majumder, B.P., Li, S., Ni, J., McAuley, J.J.: Generating personalized recipes from historical user preferences. CoRR abs/1909.00105 arXiv:1909.00105 (2019)

  26. Mendes Samagaio, Á., Lopes Cardoso, H., Ribeiro, D.: A Chatbot for recipe recommendation and preference modeling. In: Marreiros, G., Melo, F.S., Lau, N., Lopes Cardoso, H., Reis, L.P. (eds.) EPIA 2021. LNCS (LNAI), vol. 12981, pp. 389–402. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86230-5_31

    Chapter  Google Scholar 

  27. Meyer, J.G., et al.: ChatGpt and large language models in academia: opportunities and challenges. BioData Min. 16(1), 20 (2023). https://doi.org/10.1186/s13040-023-00339-9

  28. Montagna, S., Mariani, S., Pengo, M.F.: A chatbot-based recommendation framework for hypertensive patients. In: 2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS), pp. 730–733 (2023). https://doi.org/10.1109/CBMS58004.2023.00309

  29. Nadarzynski, T., Miles, O., Cowie, A., Ridge, D.: Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: a mixed-methods study. Digital Health 5, 2055207619871808 (2019). https://doi.org/10.1177/2055207619871808, pMID: 31467682

  30. OpenAI: Chatgpt. https://chat.openai.com/. ADccessed Mar 2024

  31. Ornab, A.M., Chowdhury, S., Toa, S.B.: An empirical analysis of collaborative filtering algorithms for building a food recommender system. In: Jain, L.C., E. Balas, V., Johri, P. (eds.) Data and Communication Networks. AISC, vol. 847, pp. 147–157. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-2254-9_13

    Chapter  Google Scholar 

  32. Prasetyo, P.K., Achananuparp, P., Lim, E.P.: Foodbot: a goal-oriented just-in-time healthy eating interventions chatbot. In: Proceedings of the 14th EAI International Conference on Pervasive Computing Technologies for Healthcare, p. 436–439. PervasiveHealth 2020, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3421937.3421960

  33. Shinde, N.V., Akhade, A., Bagad, P., Bhavsar, H., Wagh, S., Kamble, A.: Healthcare Chatbot system using artificial intelligence. In: 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI), pp. 1–8 (2021). https://doi.org/10.1109/ICOEI51242.2021.9452902

  34. Singh, J., Joesph, M., Abdul Jabbar, K.: Rule-based Chabot for student enquiries. J. Phys. Conf. Ser. 1228, 012060 (2019). https://doi.org/10.1088/1742-6596/1228/1/012060

  35. Singh, S., Beniwal, H.: A survey on near-human conversational agents. J. King Saud Univ. Comput. Inform. Sci. 34 (2021). https://doi.org/10.1016/j.jksuci.2021.10.013

  36. Teng, C.Y., Lin, Y.R., Adamic, L.A.: Recipe recommendation using ingredient networks. In: Proceedings of the 4th Annual ACM Web Science Conference, pp. 298–307. WebSci 2012, Association for Computing Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2380718.2380757

  37. Thongyoo, P., Anantapanya, P., Jamsri, P., Chotipant, S.: A personalized food recommendation chatbot system for diabetes patients. In: Luo, Y. (ed.) CDVE 2020. LNCS, vol. 12341, pp. 19–28. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60816-3_3

    Chapter  Google Scholar 

  38. van der Waa, J., Nieuwburg, E., Cremers, A., Neerincx, M.: Evaluating XAI: a comparison of rule-based and example-based explanations. Artif. Intell. 291, 103404 (2021)

    Article  MathSciNet  Google Scholar 

  39. Wei, C., Yu, Z., Fong, S.: How to build a chatbot: chatbot framework and its capabilities. In: Proceedings of the 2018 10th International Conference on Machine Learning and Computing, p. 369–373. ICMLC 2018, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3195106.3195169, https://doi.org/10.1145/3195106.3195169

Download references

Acknowledgments

This work has been supported by the Chist-Era grant CHIST-ERA-19-XAI-005, and by (i) the Swiss National Science Foundation (G.A. 20CH21_195530), and (ii) the Scientific and Research Council of Turkey (TÜBİTAK, G.A. 120N680).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berk Buzcu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buzcu, B., Pannatier, Y., Aydoğan, R., Ignaz Schumacher, M., Calbimonte, JP., Calvaresi, D. (2024). A Framework for Explainable Multi-purpose Virtual Assistants: A Nutrition-Focused Case Study. In: Calvaresi, D., et al. Explainable and Transparent AI and Multi-Agent Systems. EXTRAAMAS 2024. Lecture Notes in Computer Science(), vol 14847. Springer, Cham. https://doi.org/10.1007/978-3-031-70074-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70074-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70073-6

  • Online ISBN: 978-3-031-70074-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics