Evolve Cost-Aware Acquisition Functions Using Large Language Models | SpringerLink
Skip to main content

Evolve Cost-Aware Acquisition Functions Using Large Language Models

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVIII (PPSN 2024)

Abstract

Many real-world optimization scenarios involve expensive evaluation with unknown and heterogeneous costs. Cost-aware Bayesian optimization stands out as a prominent solution in addressing these challenges. To approach the global optimum within a limited budget in a cost-efficient manner, the design of cost-aware acquisition functions (AFs) becomes a crucial step. However, traditional manual design paradigm typically requires extensive domain knowledge and involves a labor-intensive trial-and-error process. This paper introduces EvolCAF, a novel framework that integrates large language models (LLMs) with evolutionary computation (EC) to automatically design cost-aware AFs. Leveraging the crossover and mutation in the algorithmic space, EvolCAF offers a novel design paradigm, significantly reduces the reliance on domain expertise and model training. The designed cost-aware AF maximizes the utilization of available information from historical data, surrogate models and budget details. It introduces novel ideas not previously explored in the existing literature on acquisition function design, allowing for clear interpretations to provide insights into its behavior and decision-making process. In comparison to the well-known EIpu and EI-cool methods designed by human experts, our approach showcases remarkable efficiency and generalization across various tasks, including 12 synthetic problems and 3 real-world hyperparameter tuning test sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8007
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10009
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, T., Li, Y., Shen, Y., Zhang, X., Zhang, W., Cui, B.: Transfer learning for bayesian optimization: a survey. arXiv preprint arXiv:2302.05927 (2023)

  2. Balandat, M., et al.: Botorch: a framework for efficient monte-carlo bayesian optimization. Adv. Neural. Inf. Process. Syst. 33, 21524–21538 (2020)

    Google Scholar 

  3. Bansal, A., Stoll, D., Janowski, M., Zela, A., Hutter, F.: JAHS-bench-201: a foundation for research on joint architecture and hyperparameter search. Adv. Neural. Inf. Process. Syst. 35, 38788–38802 (2022)

    Google Scholar 

  4. Chen, Y., et al.: Learning to learn without gradient descent by gradient descent. In: International Conference on Machine Learning, pp. 748–756. PMLR (2017)

    Google Scholar 

  5. Chen, Y., et al.: Towards learning universal hyperparameter optimizers with transformers. Adv. Neural. Inf. Process. Syst. 35, 32053–32068 (2022)

    Google Scholar 

  6. Frazier, P.I., Powell, W.B., Dayanik, S.: A knowledge-gradient policy for sequential information collection. SIAM J. Control. Optim. 47(5), 2410–2439 (2008)

    Article  MathSciNet  Google Scholar 

  7. Frazier, P.I., Wang, J.: Bayesian optimization for materials design. In: Lookman, T., Alexander, F.J., Rajan, K. (eds.) Information Science for Materials Discovery and Design. SSMS, vol. 225, pp. 45–75. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-23871-5_3

    Chapter  Google Scholar 

  8. Garnett, R., Osborne, M.A., Roberts, S.J.: Bayesian optimization for sensor set selection. In: Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, pp. 209–219 (2010)

    Google Scholar 

  9. Guinet, G., Perrone, V., Archambeau, C.: Pareto-efficient acquisition functions for cost-aware bayesian optimization. arXiv preprint arXiv:2011.11456 (2020)

  10. Hahnloser, R.H., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., Seung, H.S.: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 405(6789), 947–951 (2000)

    Google Scholar 

  11. Hemberg, E., Moskal, S., O’Reilly, U.M.: Evolving code with a large language model. arXiv preprint arXiv:2401.07102 (2024)

  12. Hsieh, B.J., Hsieh, P.C., Liu, X.: Reinforced few-shot acquisition function learning for bayesian optimization. Adv. Neural. Inf. Process. Syst. 34, 7718–7731 (2021)

    Google Scholar 

  13. Kather, J.N., Weis, C.A., Bianconi, F., Melchers, S.M., Schad, L.R., Gaiser, T., Marx, A., Zöllner, F.G.: Multi-class texture analysis in colorectal cancer histology. Sci. Rep. 6(1), 1–11 (2016)

    Article  Google Scholar 

  14. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Technical report, University of Toronto (2009)

    Google Scholar 

  15. Kushner, H.J.: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Basic Eng. 86(1), 97–106 (1964)

    Article  Google Scholar 

  16. Lee, E.H., Eriksson, D., Perrone, V., Seeger, M.: A nonmyopic approach to cost-constrained bayesian optimization. In: Uncertainty in Artificial Intelligence, pp. 568–577. PMLR (2021)

    Google Scholar 

  17. Lee, E.H., Perrone, V., Archambeau, C., Seeger, M.: Cost-aware bayesian optimization. arXiv preprint arXiv:2003.10870 (2020)

  18. Lehman, J., Gordon, J., Jain, S., Ndousse, K., Yeh, C., Stanley, K.O.: Evolution through large models. In: Banzhaf, W., Machado, P., Zhang, M. (eds.) Handbook of Evolutionary Machine Learning. Genetic and Evolutionary Computation. Springer, Singapore (2022). https://doi.org/10.1007/978-981-99-3814-8_11

  19. Liu, F., Tong, X., Yuan, M., Lin, X., Luo, F., Wang, Z., Lu, Z., Zhang, Q.: Evolution of heuristics: towards efficient automatic algorithm design using large language model. In: Proceedings of International Conference on Machine Learning (2024)

    Google Scholar 

  20. Liu, F., Tong, X., Yuan, M., Zhang, Q.: Algorithm evolution using large language model. arXiv preprint arXiv:2311.15249 (2023)

  21. Liu, T., Astorga, N., Seedat, N., van der Schaar, M.: Large language models to enhance bayesian optimization. arXiv preprint arXiv:2402.03921 (2024)

  22. Liventsev, V., Grishina, A., Härmä, A., Moonen, L.: Fully autonomous programming with large language models. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1146–1155 (2023)

    Google Scholar 

  23. Luong, P., Nguyen, D., Gupta, S., Rana, S., Venkatesh, S.: Adaptive cost-aware bayesian optimization. Knowl.-Based Syst. 232, 107481 (2021)

    Article  Google Scholar 

  24. Maraval, A., Zimmer, M., Grosnit, A., Bou Ammar, H.: End-to-end meta-bayesian optimisation with transformer neural processes. In: Advances in Neural Information Processing Systems, vol. 36 (2024)

    Google Scholar 

  25. Močkus, J.: On bayesian methods for seeking the extremum. In: Marchuk, G.I. (ed.) Optimization Techniques 1974. LNCS, vol. 27, pp. 400–404. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07165-2_55

    Chapter  Google Scholar 

  26. Müller, S.G., Hutter, F.: Trivialaugment: tuning-free yet state-of-the-art data augmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 774–782 (2021)

    Google Scholar 

  27. Negoescu, D.M., Frazier, P.I., Powell, W.B.: The knowledge-gradient algorithm for sequencing experiments in drug discovery. Informs J. Comput. 23(3), 346–363 (2011)

    Article  MathSciNet  Google Scholar 

  28. Qian, W., He, Z., Li, L., Liu, X., Gao, F.: Cobabo: a hyperparameter search method with cost budget awareness. In: 2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS), pp. 408–412. IEEE (2021)

    Google Scholar 

  29. Romera-Paredes, B., et al.: Mathematical discoveries from program search with large language models. Nature 625(7995), 468–475 (2024)

    Article  Google Scholar 

  30. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  31. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.: Gaussian process optimization in the bandit setting: no regret and experimental design. arXiv preprint arXiv:0912.3995 (2009)

  32. Turner, R., et al.: Bayesian optimization is superior to random search for machine learning hyperparameter tuning: Analysis of the black-box optimization challenge 2020. In: NeurIPS 2020 Competition and Demonstration Track, pp. 3–26. PMLR (2021)

    Google Scholar 

  33. TV, V., Malhotra, P., Narwariya, J., Vig, L., Shroff, G.: Meta-learning for black-box optimization. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds.) ECML PKDD 2019. LNCS (LNAI), vol. 11907, pp. 366–381. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46147-8_22

    Chapter  Google Scholar 

  34. Volpp, M., et al.: Meta-learning acquisition functions for transfer learning in bayesian optimization. arXiv preprint arXiv:1904.02642 (2019)

  35. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  36. Zhang, M.R., Desai, N., Bae, J., Lorraine, J., Ba, J.: Using large language models for hyperparameter optimization. In: NeurIPS 2023 Foundation Models for Decision Making Workshop (2023)

    Google Scholar 

Download references

Acknowledgments

The work described in this paper was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China [GRF Project No. CityU-11215723], the Natural Science Foundation of China (Project No: 62276223), and the Key Basic Research Foundation of Shenzhen, China (JCYJ20220818100005011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiming Yao or Qingfu Zhang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors declare that they have no known competing interest that could appear to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, Y., Liu, F., Cheng, J., Zhang, Q. (2024). Evolve Cost-Aware Acquisition Functions Using Large Language Models. In: Affenzeller, M., et al. Parallel Problem Solving from Nature – PPSN XVIII. PPSN 2024. Lecture Notes in Computer Science, vol 15149. Springer, Cham. https://doi.org/10.1007/978-3-031-70068-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70068-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70067-5

  • Online ISBN: 978-3-031-70068-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics