Study of Cathodic Electrotactile Stimulus Current Estimation on Fingertip Using Individual Skin Impedance and Machine Learning | SpringerLink
Skip to main content

Study of Cathodic Electrotactile Stimulus Current Estimation on Fingertip Using Individual Skin Impedance and Machine Learning

  • Conference paper
  • First Online:
Haptics: Understanding Touch; Technology and Systems; Applications and Interaction (EuroHaptics 2024)

Abstract

Electrotactile stimulation involves the direct stimulation of tactile receptors with a small electrical current and has advantages such as device miniaturization and high responsiveness. However, there are large individual differences in the sensations generated, which requires each user to adjust the current intensity before experiencing tactile sensation. This is a common disadvantage of electrotactile stimulation and hinders its practical use. In this study, we propose a method for measuring skin impedance (i.e., resistance (R) and capacitance (C)) in real time and estimating the individual stimulated current using machine learning. We measured skin impedances by fitting the voltage waveform between the anodic and cathodic electrodes to an exponential curve when stimulating a constant current pulse. We used 0.2 and 0.4 mA of prepulses (before stimulation) to estimate the electrical current of sensation threshold during cathodic stimulation. Results confirmed that machine learning can be used to estimate the stimulated current, and random forest regression was the most appropriate method (mean correlation coefficient of r2 = 0.95). The machine learning model was tested on 10 participants, which showed that the sensation threshold varied from 0.8 to 1.4 of the estimated value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yoshimoto, S., Kuroda, Y., Imura, M., Oshiro, O.: Material roughness modulation via electrotactile augmentation. IEEE Trans. Haptic 8(2), 199–208 (2015)

    Article  Google Scholar 

  2. Yem, V., Kajimoto, H.: Combination of cathodic electrical stimulation and mechanical damped sinusoidal vibration to express tactile softness in the tapping process. In: IEEE Haptics Symposium (HAPTICS), pp. 84–88 (2018)

    Google Scholar 

  3. Yem, V., Vu, K., Kon, Y., Kajimoto, H.: Effect of electrical stimulation haptic feedback on perceptions of softness-hardness and stickiness while touching a virtual object. In: IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 89–96 (2018)

    Google Scholar 

  4. Akhtar, A., Sombeck, J., Boyce, B., Bretl, T.: Controlling sensation intensity for electrotactile stimulation in human-machine interfaces. Sci. Robot. 3(17), 9770 (2018)

    Article  Google Scholar 

  5. Bajd, T.: ‘Surface electrostimulation electrodes. in Wiley Encyclopedia of Biomedical Engineering. Hoboken, NJ, USA: Wiley (2006)

    Google Scholar 

  6. McNeal, D.R.: Analysis of a model for excitation of myelinated nerve. IEEE Trans. Biomed. Eng. BME 4, 329–337 (1976)

    Article  Google Scholar 

  7. Kajimoto, H.: Electro-tactile display: principle and hardware. In: Kajimoto, H., Saga, S., Konyo, M. (eds.) Pervasive Haptics, pp 79–96. Springer, Tokyo (2016)

    Google Scholar 

  8. Rattay, F.: Modeling axon membranes for functional electrical stimulation. IEEE Trans. Biomed. Eng. 40(12), 1201–1209 (1993)

    Article  Google Scholar 

  9. Ivanic, R., et al.: Thin film non-symmetric microelectrode array for impedance monitoring of human skin. ELSEVIER, Thin Solid Films 433, 332–336 (2003)

    Article  Google Scholar 

  10. Chizmadzhev, Y.A., Indenbom, A.V., Kuzmin, P.I., Galichenko, S.V., Weaver, J.C., Potts, R.O.: Electrical properties of skin at moderate voltages: contribution of appendageal macropores. Biophys. J. 74, 843–856 (1998)

    Article  Google Scholar 

  11. Dorgan, S.J., Reilly, R.B.: A model for human skin impedance during surface functional neuromuscular stimulation. IEEE Trans. on Rehabil. Eng. 7(3), 341–348 (1999)

    Article  Google Scholar 

  12. Takahashi, H., Kajimoto, H., Kawakami, N., Tachi, S.: Electro-Tactile Display with Localized High-Speed Switching. In: ICAT (2002)

    Google Scholar 

  13. Watanabe, T., Watanabe, S., Yoshino, K., Futami, R., Hoshimiya, N.: A study of relevance of skin impedance to absolute threshold for stabilization of cutaneous sensation elicited by electric current stimulation. Trans. Biomech. 16, 61–73 (2002)

    Google Scholar 

  14. Shen, Y., Gregory, J., Xi, N.: Stimulation current control for load-aware electrotactile haptic rendering: modeling and simulation. Robot. Auton. Syst. 62(1), 81–89 (2014)

    Article  Google Scholar 

  15. Clemente, F., Arpaia, P., Manna, C.: Characterization of human skin impedance after electrical treatment for transdermal drug delivery. Measurement 46, 3494–3501 (2013)

    Article  Google Scholar 

  16. Kontturi, K., et al.: Electrochemical characterization of human skin by impedance spectroscopy: the effect of penetration enhancers. Pharm. Res. 10, 381–385 (1993)

    Article  Google Scholar 

  17. Yamamoto, T., Yamamoto, Y.: Electrical properties of the epidermal stratum corneum. Med. Biol. Eng. 14, 151–158 (1976)

    Article  Google Scholar 

  18. Higashiyama, A., Hayashi, M.: Localization of electrocuta-neous stimuli on the fingers and forearm: effects of electrode con-figuration and body axis. Percept. Psychophys. 54(1), 108–120 (1993)

    Article  Google Scholar 

  19. Kaczmarek, K.A., et al.: The afferent neural response to electrotactile stimuli: preliminary results. IEEE Trans. Rehabil. Eng. 8(2), 268–270 (2000)

    Article  Google Scholar 

  20. Collins, C.C.: Tactile television: mechanical electrical image projection. IEEE Trans. Man-Machine Systems 11(1), 65–71 (1970)

    Article  Google Scholar 

  21. Poletto, C.J., Van Doren, C.L.: Elevating pain thresholds in humans using depolarizing prepulses. IEEE Trans. Biomed. Eng. 49(10), 1221–1224 (2002)

    Article  Google Scholar 

  22. Kaczmarek, K.A., Webster, J.G., Radwin, R.G.: Maximal dynamic range electrotactile stimulation waveforms. IEEE Trans. Biomed. Eng. 39(7), 701–715 (1992)

    Article  Google Scholar 

  23. Tachi, S., Tanie, K., Komoriya, K., Abe, M.: Electrocutaneous communication in a guide dog robot (MELDOG). IEEE Trans. Biomed. Eng. 32(7), 461–469 (1985)

    Article  Google Scholar 

  24. Rahimi, M., Shen, Y.: Adaptive spatial mapping of electro-tactile threshold based on subdivision bio-impedance feedback. In: IEEE International Conference on Real-time Computing and Robotics (RCAR), pp. 164–169 (2019)

    Google Scholar 

  25. Kajimoto, H.: Electrotactile display with real-time impedance feedback using pulse width modulation. IEEE Trans. on Haptic 5(2), 184–188 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Research supported by JSPS Grant-in-Aid for Scientific Research JP19K20325 and JST A-STEP Grant Number JPMJTR23RC, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibol Yem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yem, V., Ikei, Y., Kajimoto, H. (2025). Study of Cathodic Electrotactile Stimulus Current Estimation on Fingertip Using Individual Skin Impedance and Machine Learning. In: Kajimoto, H., et al. Haptics: Understanding Touch; Technology and Systems; Applications and Interaction. EuroHaptics 2024. Lecture Notes in Computer Science, vol 14769. Springer, Cham. https://doi.org/10.1007/978-3-031-70061-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70061-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70060-6

  • Online ISBN: 978-3-031-70061-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics