Towards Intensifying Perceived Pressure in Midair Haptics: Comparing Perceived Pressure Intensity and Skin Displacement Between LM and AM Stimuli | SpringerLink
Skip to main content

Towards Intensifying Perceived Pressure in Midair Haptics: Comparing Perceived Pressure Intensity and Skin Displacement Between LM and AM Stimuli

  • Conference paper
  • First Online:
Haptics: Understanding Touch; Technology and Systems; Applications and Interaction (EuroHaptics 2024)

Abstract

Ultrasound Midair Haptics (UMH) can present various noncontact tactile patterns by focusing ultrasound on human skin. With UMH, a steady pressure sensation can be presented by periodically shifting a stimulus point (ultrasound focus) at several hertz. Such stimulus with a periodic focal shift is called Lateral Modulation (LM). The perceived intensity of this pressure sensation was several times stronger than the applied radiation force (e.g., 0.22 N for 27 mN of radiation force). Further intensifying the pressure sensation by LM expands the range of reproducible tactile sensations such as a hard object; however, a stimulus design guideline for the intensification has not been established because the perception mechanism of the LM-evoked pressure sensation is still unclear. Towards intensifying the pressure sensations in UMH, this study investigates the effects of the main frequency components of skin vibrations produced by LM and that of the amplitude on the perceived pressure intensity. We first confirmed that the perceived pressure intensity of LM 5 Hz was stronger than that of 5 Hz amplitude modulation (AM). AM is a simple vibration with a fixed stimulus position. We also measured the 5 Hz vibration amplitude of the skin during stimulation and confirmed no significant difference in the amplitude between LM and AM. The results showed that a 5 Hz skin vibration and the amplitude alone cannot explain the perceived intensity of the pressure sensation by LM. These results indicate that other factors in LM such as focal shifts would be necessary to present stronger pressure sensations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 16015
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bolanowski Jr., S.J., Gescheider, G.A., Verrillo, R.T., Checkosky, C.M.: Four channels mediate the mechanical aspects of touch. J. Acoust. Soc. Am. 84(5), 1680–1694 (1988)

    Google Scholar 

  2. Carter, T., Seah, S.A., Long, B., Drinkwater, B., Subramanian, S.: UltraHaptics: multi-point mid-air haptic feedback for touch surfaces. In: Proceedings of the 26th annual ACM Symposium on User Interface Software and Technology, pp. 505–514. ACM (2013)

    Google Scholar 

  3. Chilles, J., Frier, W., Abdouni, A., Giordano, M., Georgiou, O.: Laser doppler vibrometry and fem simulations of ultrasonic mid-air haptics. In: Proceedings of 2019 IEEE World Haptics Conference (WHC), pp. 259–264. IEEE (2019)

    Google Scholar 

  4. Frier, W., Abdouni, A., Pittera, D., Georgiou, O., Malkin, R.: Simulating airborne ultrasound vibrations in human skin for haptic applications. IEEE Access 10, 15443–15456 (2022)

    Article  Google Scholar 

  5. Frier, W., et al.: Using spatiotemporal modulation to draw tactile patterns in mid-air. In: Prattichizzo, D., Shinoda, H., Tan, H.Z., Ruffaldi, E., Frisoli, A. (eds.) EuroHaptics 2018. LNCS, vol. 10893, pp. 270–281. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93445-7_24

    Chapter  Google Scholar 

  6. Frier, W., Pittera, D., Ablart, D., Obrist, M., Subramanian, S.: Sampling strategy for ultrasonic mid-air haptics. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–11 (2019)

    Google Scholar 

  7. Hasegawa, K., Shinoda, H.: Aerial vibrotactile display based on multiunit ultrasound phased array. IEEE Trans. Haptics 11(3), 367–377 (2018)

    Article  Google Scholar 

  8. Hoshi, T., Takahashi, M., Iwamoto, T., Shinoda, H.: Noncontact tactile display based on radiation pressure of airborne ultrasound. IEEE Trans. Haptics 3(3), 155–165 (2010)

    Article  Google Scholar 

  9. Iggo, A., Muir, A.R.: The structure and function of a slowly adapting touch corpuscle in hairy skin. J. Physiol. 200(3), 763 (1969)

    Article  Google Scholar 

  10. Iwamoto, T., Shinoda, H.: Ultrasound tactile display for stress field reproduction-examination of non-vibratory tactile apparent movement. In: Proceedings of First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 220–228. IEEE (2005)

    Google Scholar 

  11. Kajimoto, H., Kawakami, N., Tachi, S.: Electro-tactile display with tactile primary color approach. In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE (2004)

    Google Scholar 

  12. Konyo, M., Tadokoro, S., Yoshida, A., Saiwaki, N.: A tactile synthesis method using multiple frequency vibrations for representing virtual touch. In: Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3965–3971. IEEE (2005)

    Google Scholar 

  13. Korres, G., Chehabeddine, S., Eid, M.: Mid-air tactile feedback co-located with virtual touchscreen improves dual-task performance. IEEE Trans. Haptics 13(4), 825–830 (2020)

    Article  Google Scholar 

  14. Makino, Y., Furuyama, Y., Inoue, S., Shinoda, H.: HaptoClone (haptic-optical clone) for mutual tele-environment by real-time 3D image transfer with midair force feedback. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1980–1990 (2016)

    Google Scholar 

  15. Monnai, Y., Hasegawa, K., Fujiwara, M., Yoshino, K., Inoue, S., Shinoda, H.: HaptoMime: mid-air haptic interaction with a floating virtual screen. In: Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, pp. 663–667 (2014)

    Google Scholar 

  16. Morisaki, T., Fujiwara, M., Makino, Y., Shinoda, H.: Midair haptic-optic display with multi-tactile texture based on presenting vibration and pressure sensation by ultrasound. In: Proceedings of SIGGRAPH Asia 2021 Emerging Technologies, pp. 1–2 (2021)

    Google Scholar 

  17. Morisaki, T., Fujiwara, M., Makino, Y., Shinoda, H.: Non-vibratory pressure sensation produced by ultrasound focus moving laterally and repetitively with fine spatial step width. IEEE Trans. Haptics 15(2), 441–450 (2021)

    Article  Google Scholar 

  18. Morisaki, T., Fujiwara, M., Makino, Y., Shinoda, H.: Noncontact haptic rendering of static contact with convex surface using circular movement of ultrasound focus on a finger pad. IEEE Trans. Haptics (2023)

    Google Scholar 

  19. Rakkolainen, I., Freeman, E., Sand, A., Raisamo, R., Brewster, S.: A survey of mid-air ultrasound haptics and its applications. IEEE Trans. Haptics 14(1), 2–19 (2020)

    Article  Google Scholar 

  20. Suzuki, S., Inoue, S., Fujiwara, M., Makino, Y., Shinoda, H.: AUTD3: scalable airborne ultrasound tactile display. IEEE Trans. Haptics 14(4), 740–749 (2021)

    Article  Google Scholar 

  21. Takahashi, R., Hasegawa, K., Shinoda, H.: Lateral modulation of midair ultrasound focus for intensified vibrotactile stimuli. In: Prattichizzo, D., Shinoda, H., Tan, H.Z., Ruffaldi, E., Frisoli, A. (eds.) EuroHaptics 2018. LNCS, vol. 10894, pp. 276–288. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93399-3_25

    Chapter  Google Scholar 

  22. Takahashi, R., Hasegawa, K., Shinoda, H.: Tactile stimulation by repetitive lateral movement of midair ultrasound focus. IEEE Trans. Haptics 13(2), 334–342 (2019)

    Article  Google Scholar 

  23. Vallbo, A.B., Johansson, R.S., et al.: Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum. Neurobiol. 3(1), 3–14 (1984)

    Google Scholar 

  24. Wojna, K., Georgiou, O., Beattie, D., Frier, W., Wright, M., Lutteroth, C.: An exploration of just noticeable differences in mid-air haptics. In: 2023 IEEE World Haptics Conference (WHC), pp. 410–416. IEEE (2023)

    Google Scholar 

  25. Yosioka, K., Kawasima, Y.: Acoustic radiation pressure on a compressible sphere. Acta Acust. Acust. 5(3), 167–173 (1955)

    Google Scholar 

  26. Young, G., Milne, H., Griffiths, D., Padfield, E., Blenkinsopp, R., Georgiou, O.: Designing mid-air haptic gesture controlled user interfaces for cars. Proc. ACM Hum.-Comput. Interact. 4(EICS), 1–23 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Morisaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morisaki, T., Ujitoko, Y. (2025). Towards Intensifying Perceived Pressure in Midair Haptics: Comparing Perceived Pressure Intensity and Skin Displacement Between LM and AM Stimuli. In: Kajimoto, H., et al. Haptics: Understanding Touch; Technology and Systems; Applications and Interaction. EuroHaptics 2024. Lecture Notes in Computer Science, vol 14768. Springer, Cham. https://doi.org/10.1007/978-3-031-70058-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70058-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70057-6

  • Online ISBN: 978-3-031-70058-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics