Controller Synthesis in Timed Büchi Automata: Robustness and Punctual Guards | SpringerLink
Skip to main content

Controller Synthesis in Timed Büchi Automata: Robustness and Punctual Guards

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems and Formal Modeling and Analysis of Timed Systems (QEST+FORMATS 2024)

Abstract

We consider the synthesis problem on timed automata with Büchi objectives, where delay choices made by a controller are subjected to small perturbations. Usually, the controller needs to avoid punctual guards, such as testing the equality of a clock to a constant. In this work, we generalize to a robustness setting that allows for punctual transitions in the automaton to be taken by controller with no perturbation. In order to characterize cycles that resist perturbations in our setting, we introduce a new structural requirement on the reachability relation along an accepting cycle of the automaton. This property is formulated on the region abstraction, and generalizes the existing characterization of winning cycles in the absence of punctual guards. We show that the problem remains within \(\textsf{PSPACE}\) despite the presence of punctual guards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Including self-loops \(v\rightarrow v\) for every vertex v.

  2. 2.

    On automata with 3 clocks, some corner partitions may induce slices described by linear equations of the shape \(x+y-z=w\).

References

  1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  Google Scholar 

  2. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In: Proceedings of IFAC Symposium on System Structure and Control, pp. 469–474. Elsevier (1998)

    Google Scholar 

  3. Barbot, B., Busatto-Gaston, D., Dima, C., Oualhadj, Y.: Controller synthesis in timed Büchi automata: robustness and punctual guards. CoRR abs/2404.18584 (2024). https://doi.org/10.48550/ARXIV.2404.18584

  4. Basset, N., Asarin, E.: Thin and thick timed regular languages. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 113–128. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24310-3_9

    Chapter  Google Scholar 

  5. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2_3

    Chapter  Google Scholar 

  6. Busatto-Gaston, D., Monmege, B., Reynier, P.-A., Sankur, O.: Robust controller synthesis in timed Büchi automata: a symbolic approach. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 572–590. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_33

    Chapter  Google Scholar 

  7. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005). https://doi.org/10.1007/11539452_9

    Chapter  Google Scholar 

  8. Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust timed automata. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0014736

    Chapter  Google Scholar 

  9. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59042-0_76

    Chapter  Google Scholar 

  10. Oualhadj, Y., Reynier, P.-A., Sankur, O.: Probabilistic robust timed games. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 203–217. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6_15

    Chapter  Google Scholar 

  11. Puri, A.: Dynamical properties of timed automata. Discret. Event Dyn. Syst. 10(1–2), 87–113 (2000). https://doi.org/10.1023/A:1008387132377

    Article  MathSciNet  Google Scholar 

  12. Rodríguez-Navas, G., Proenza, J.: Using timed automata for modeling distributed systems with clocks: challenges and solutions. IEEE Trans. Softw. Eng. 39(6), 857–868 (2013). https://doi.org/10.1109/TSE.2012.73

    Article  Google Scholar 

  13. Sankur, O.: Robustness in timed automata: analysis, synthesis, implementation. (Robustesse dans les automates temporisés: analyse, synthèse, implémentation). Ph.D. thesis, École normale supérieure de Cachan, Paris, France (2013). https://tel.archives-ouvertes.fr/tel-00910333

  14. Sankur, O., Bouyer, P., Markey, N.: Shrinking timed automata. Inf. Comput. 234, 107–132 (2014). https://doi.org/10.1016/J.IC.2014.01.002

    Article  MathSciNet  Google Scholar 

  15. Sankur, O., Bouyer, P., Markey, N., Reynier, P.-A.: Robust controller synthesis in timed automata. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 546–560. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40184-8_38

    Chapter  Google Scholar 

  16. Stainer, A.: Frequencies in forgetful timed automata. In: Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 236–251. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33365-1_17

    Chapter  Google Scholar 

  17. De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robustness and implementability of timed automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 118–133. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_10

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssouf Oualhadj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbot, B., Busatto-Gaston, D., Dima, C., Oualhadj, Y. (2024). Controller Synthesis in Timed Büchi Automata: Robustness and Punctual Guards. In: Hillston, J., Soudjani, S., Waga, M. (eds) Quantitative Evaluation of Systems and Formal Modeling and Analysis of Timed Systems. QEST+FORMATS 2024. Lecture Notes in Computer Science, vol 14996. Springer, Cham. https://doi.org/10.1007/978-3-031-68416-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-68416-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-68415-9

  • Online ISBN: 978-3-031-68416-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics