Extending an Intelligent Tutoring System for Oral Communication with Peer Assessment Capabilities: An Evaluation Study | SpringerLink
Skip to main content

Extending an Intelligent Tutoring System for Oral Communication with Peer Assessment Capabilities: An Evaluation Study

  • Conference paper
  • First Online:
Collaboration Technologies and Social Computing (CollabTech 2024)

Abstract

The ability to succinctly and effectively communicate complex ideas is increasingly recognized as a critical skill for engineering professionals, defining a realm of ill-defined learning tasks. The elevator pitch, particularly, serves as a prime example of this necessity. This study explores the extension of the EPIC intelligent tutoring system, originally designed to enhance oral communication skills in development and performance of elevator pitches through individual learning, by integrating collaborative capabilities with a focus on peer-assessment. A pilot study with 24 engineering students was conducted to assess the user experience, usability and learning outcomes. Results indicate that students’ experience and usability perceptions are generally positive. Moreover, students who positively rated the peer-assessment functionalities showed marked improvements in their abilities to deliver effective elevator pitches. Pedagogical implications and design criteria aiming to improve students’ valuation of collaborative work are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almasri, A., Ahmed, A.: Intelligent tutoring systems survey for the period 2000–2018. Int. J. Acad. Eng. Res. (IJAER) 3(5), 21–37 (2019)

    Google Scholar 

  2. Kulik, J.A., Fletcher, J.D.: Effectiveness of intelligent tutoring systems: a meta-analytic review. Rev. Educ. Res. 86(1), 42–78 (2016)

    Article  Google Scholar 

  3. VanLehn, K.: The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educ. Psychol. 46(4), 197–221 (2011)

    Article  Google Scholar 

  4. Fournier-Viger, P., Nkambou, R., Nguifo, E.M.: Building intelligent tutoring systems for ill-defined domains. In: Nkambou, R., Bourdeau, J., Mizoguchi, R. (eds) Advances in Intelligent Tutoring Systems. Studies in Computational Intelligence, vol 308, pp. 81–101. Springer, Berlin, Heidelberg (2010).

    Google Scholar 

  5. Butterfuss, R., Roscoe, R.D., Allen, L.K., McCarthy, K.S., McNamara, D.S.: Strategy uptake in writing pal: adaptive feedback and instruction. J. Educ. Comput. Res. 60(3), 696–721 (2022)

    Article  Google Scholar 

  6. Meijs, C., Gijselaers, H.J., Xu, K.M., Kirschner, P.A., De Groot, R.H.: The relation between cognitively measured executive functions and reported self-regulated learning strategy use in adult online distance education. Front. Psychol. 12 (2021)

    Google Scholar 

  7. House, R., Livingston, J., Summers, S., Watt, A.: Elevator pitches, crowdfunding, and the rhetorical politics of entrepreneurship. In: 2016 IEEE International Professional Communication Conference (IPCC), pp. 1–4. IEEE (2016)

    Google Scholar 

  8. Margherita, A., Verrill, D.: Elevator pitch assessment model: a systematization of dimensions in technology entrepreneurship presentations. IEEE Trans. Prof. Commun. 64(4), 304–321 (2021)

    Article  Google Scholar 

  9. Chen, X., Zou, D., Xie, H., Cheng, G., Liu, C.: Two decades of artificial intelligence in education. Educ. Technol. Soc. 25(1), 28–47 (2022)

    Google Scholar 

  10. Hernández-Sellés, N., Muñoz-Carril, P.C., González-Sanmamed, M.: Computer-supported collaborative learning: an analysis of the relationship between interaction, emotional support and online collaborative tools. Comput. Edu. 138, 1–12 (2019)

    Article  Google Scholar 

  11. Qureshi, M.A., Khaskheli, A., Qureshi, J.A., Raza, S.A., Yousufi, S.Q.: Factors affecting students’ learning performance through collaborative learning and engagement. Interact. Learn. Environ. 31(4), 2371–2391 (2023)

    Article  Google Scholar 

  12. Recabarren, M., Correa, V., Álvarez, C., Milrad, M.: Comparison of different pedagogical designs for an ITS: the case of oral speech as an ill-defined domain. In: Milrad, M., et al. Methodologies and Intelligent Systems for Technology Enhanced Learning, 13th International Conference, MIS4TEL 2023. Lecture Notes in Networks and Systems, vol. 764, Springer, Cham (2023)

    Google Scholar 

  13. Olsen, J.K., Belenky, D.M., Aleven, V., Rummel, N.: Using an intelligent tutoring system to support collaborative as well as individual learning. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds.) ITS 2014. LNCS, vol. 8474, pp. 134–143. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07221-0_16

    Chapter  Google Scholar 

  14. Haq, I.U., Anwar, A., Basharat, I., Sultan, K.: Intelligent tutoring supported collaborative learning (itscl): a hybrid framework. Int. J. Adv. Comput. Sci. Appl. 11(8) (2020)

    Google Scholar 

  15. Magnisalis, I., Demetriadis, S., Karakostas, A.: Adaptive and intelligent systems for collaborative learning support: a review of the field. IEEE Trans. Learn. Technol. 4(1), 5–20 (2011)

    Article  Google Scholar 

  16. Tchounikine, P., Rummel, N., McLaren, B.M.: Computer supported collaborative learning and intelligent tutoring systems. In: Advances in intelligent tutoring systems, pp. 447–463. Berlin, Heidelberg: Springer Berlin Heidelberg (2010). https://doi.org/10.1007/978-3-642-14363-2_22

  17. Virvou, M., Alepis, E., Troussas, C.: User modeling on communication characteristics using machine learning in computer-supported collaborative multiple language learning. In: 2012 IEEE 24th International Conference on Tools with Artificial Intelligence, Vol. 1, pp. 1088–1093. IEEE (2012)

    Google Scholar 

  18. Epstein, D., da Costa Pinho, I., Acosta, O.C., Reategui, E.: Inquiry-based learning environment using intelligent tutoring system. In: 2013 IEEE Frontiers in Education Conference (FIE), pp. 1072–1074. IEEE (2013)

    Google Scholar 

  19. Chopade, P., Khan, S., Stoeffler, K., Edward, D., Rosen, Y., von Davier, A.: Framework for effective teamwork assessment in collaborative learning and problem solving. In: Proceedings of the 19th International Conference on Artificial Intelligence in Education (AIED 2018), pp. 48–59. IOS Press (2018)

    Google Scholar 

  20. Schneider, J., Börner, D., Van Rosmalen, P., Specht, M.: Can you help me with my pitch? Studying a tool for real-time automated feedback. IEEE Trans. Learn. Technol. 9(4), 318–327 (2016)

    Article  Google Scholar 

  21. Brooke, J.: SUS: A quick and dirty usability scale. Usability Eval. Ind. 189 (1995)

    Google Scholar 

  22. Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system usability scale. Int. J. Human-Comput. Interact. 24(6), 574–594 (2008)

    Article  Google Scholar 

  23. Nelson, M.M., Schunn, C.D.: The nature of feedback: how different types of peer feedback affect writing performance. Instr. Sci. 37, 375–401 (2009)

    Article  Google Scholar 

  24. Afzal, S., Shashidhar, V., Sindhgatta, R., Sengupta, B.: Impact of tutor errors on student engagement in a dialog based intelligent tutoring system. In: Nkambou, R., Azevedo, R., Vassileva, J. (eds.) ITS 2018. LNCS, vol. 10858, pp. 267–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91464-0_26

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Recabarren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ibarra, J., Álvarez, C., Recabarren, M. (2024). Extending an Intelligent Tutoring System for Oral Communication with Peer Assessment Capabilities: An Evaluation Study. In: Santos, P., Álvarez, C., Hernández-Leo, D., Kobayashi, M., Zurita, G. (eds) Collaboration Technologies and Social Computing. CollabTech 2024. Lecture Notes in Computer Science, vol 14890. Springer, Cham. https://doi.org/10.1007/978-3-031-67998-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-67998-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-67997-1

  • Online ISBN: 978-3-031-67998-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics