Structural Brain Network Generation via Brain Denoising Diffusion Probabilistic Model | SpringerLink
Skip to main content

Structural Brain Network Generation via Brain Denoising Diffusion Probabilistic Model

  • Conference paper
  • First Online:
Artificial Intelligence in Healthcare (AIiH 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14975))

Included in the following conference series:

  • 297 Accesses

Abstract

Alzheimer’s disease (AD) significantly impairs the quality of life for a vast patient population and poses treatment challenges, partly due to its elusive pathophysiological mechanisms. The analysis of structural brain networks is fundamental to elucidating these mechanisms. However, acquiring data on such networks is non-trivial, hindered by the slow generation of structural brain network data and the complexities involved in obtaining DTI, a key requisite for their construction. In this study, we introduce a brain denoising diffusion probabilistic model designed to synthesize structural brain networks at various stages of AD, thereby mitigating the difficulties inherent in data acquisition. We trained this model on the ADNI dataset, utilizing two sets of data: one comprising structural brain networks produced by PANDA, and the other amalgamating these PANDA-generated networks with those synthesized by our model. Both datasets were employed to train a DiffPool for subsequent diagnostic tasks. It can be seen that the brain networks generated by the brain denoising diffusion probabilistic model are beneficial for structural brain networks in downstream diagnostic tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 16015
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Masters, C.L., Bateman, R., Blennow, K., Rowe, C.C., Sperling, R.A., Cummings, J.L.: Alzheimer’s disease. Nat. Rev. Disease Primers 1(1), 1–18 (2015)

    Google Scholar 

  2. Yu, W., et al.: Morphological feature visualization of alzheimer’s disease via multidirectional perception gan. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  3. Zuo, Q., Zhong, N., Pan, Y., Wu, H., Lei, B., Wang, S.: Brain structure-function fusing representation learning using adversarial decomposed-vae for analyzing mci. IEEE Trans. Neural Syst. Rehabilit. Eng. (2023)

    Google Scholar 

  4. Filippi, M., et al.: Changes in functional and structural brain connectome along the alzheimer’s disease continuum. Mol. Psychiatry 25(1), 230–239 (2020)

    Article  Google Scholar 

  5. Cui, Z., Zhong, S., Xu, P., He, Y., Gong, G.: Panda: a pipeline toolbox for analyzing brain diffusion images. Front. Hum. Neurosci. 7, 42 (2013)

    Article  Google Scholar 

  6. You, S., et al.: Fine perceptive gans for brain mr image super-resolution in wavelet domain. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  7. Hu, S., Lei, B., Wang, S., Wang, Y., Feng, Z., Shen, Y.: Bidirectional mapping generative adversarial networks for brain mr to pet synthesis. IEEE Trans. Med. Imaging 41(1), 145–157 (2021)

    Article  Google Scholar 

  8. Hu, B., Zhan, C., Tang, B., Wang, B., Lei, B., Wang, S.Q.: 3-d brain reconstruction by hierarchical shape-perception network from a single incomplete image. IEEE Trans. Neural Netw. Learn. Syst. (2023)

    Google Scholar 

  9. Wang, S.Q.: A variational approach to nonlinear two-point boundary value problems. Comput. Math. Appli. 58(11–12), 2452–2455 (2009)

    Article  MathSciNet  Google Scholar 

  10. Wang, S., Wang, H., Cheung, A.C., Shen, Y., Gan, M.: Ensemble of 3d densely connected convolutional network for diagnosis of mild cognitive impairment and alzheimer’s disease. Deep Learn. Appli., 53–73 (2020)

    Google Scholar 

  11. Yan, H., Zhang, H., Shi, J., Ma, J., Xu, X.: Inspiration transfer for intelligent design: a generative adversarial network with fashion attributes disentanglement. IEEE Trans. Consumer Electr. (2023)

    Google Scholar 

  12. Gong, C., et al.: Generative artificial intelligence-enabled dynamic detection of rat nicotine-related circuits. Neural Comput. Appli. 36(9), 4693–4707 (2024)

    Google Scholar 

  13. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  14. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  15. Mueller, S.G., et al.: The alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. N. Am. 15(4), 869 (2005)

    Article  Google Scholar 

  16. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical graph representation learning with differentiable pooling. Adv. Neural Information Process. Syst. 31 (2018)

    Google Scholar 

  17. Chen, X., Lei, B., Pun, C.M., Wang, S.: Brain diffuser: an end-to-end brain image to brain network pipeline. In: Chinese Conference on Pattern Recognition and Computer Vision (PRCV). pp. 16–26. Springer (2023). https://doi.org/10.1007/978-981-99-8558-6_2

  18. Gong, C., et al.: Generative ai for brain image computing and brain network computing: a review. Front. Neurosci. 17, 1203104 (2023)

    Article  Google Scholar 

  19. Pan, J., Lei, B., Shen, Y., Liu, Y., Feng, Z., Wang, S.: Characterization multimodal connectivity of brain network by hypergraph gan for alzheimer’s disease analysis. In: Ma, H., et al. (eds.) PRCV 2021. LNCS, vol. 13021, pp. 467–478. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88010-1_39

    Chapter  Google Scholar 

  20. Zuo, Q., Wu, H., Chen, C.P., Lei, B., Wang, S.: Prior-guided adversarial learning with hypergraph for predicting abnormal connections in alzheimer’s disease. IEEE Trans. Cybernet. (2024)

    Google Scholar 

  21. Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., He, Y.: Gretna: a graph theoretical network analysis toolbox for imaging connectomics. Front. Hum. Neurosci. 9, 386 (2015)

    Google Scholar 

  22. Zhou, Z., et al.: A toolbox for brain network construction and classification (brainnetclass). Hum. Brain Mapp. 41(10), 2808–2826 (2020)

    Article  Google Scholar 

  23. Jing, C., Kuai, H., Matsumoto, H., Yamaguchi, T., Liao, I.Y., Wang, S.: Addiction-related brain networks identification via graph diffusion reconstruction network. Brain Inform. 11(1), 1 (2024)

    Article  Google Scholar 

  24. Jing, C., Gong, C., Chen, Z., Wang, S.: Graph diffusion reconstruction network for addictive brain-networks identification. In: International Conference on Brain Informatics, pp. 133–145. Springer (2023). https://doi.org/10.1007/978-3-031-43075-6_12

  25. Nerrise, F., Zhao, Q., Poston, K.L., Pohl, K.M., Adeli, E.: An explainable geometric-weighted graph attention network for identifying functional networks associated with gait impairment. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 723–733. Springer (2023). https://doi.org/10.1007/978-3-031-43895-0_68

  26. Yao, D., et al.: A mutual multi-scale triplet graph convolutional network for classification of brain disorders using functional or structural connectivity. IEEE Trans. Med. Imaging 40(4), 1279–1289 (2021)

    Article  Google Scholar 

  27. Li, Z., Chen, X., Wang, S., Pun, C.M.: A large-scale film style dataset for learning multi-frequency driven film enhancement. In: International Joint Conference on Artificial Intelligence, pp. 1160–1168 (2023)

    Google Scholar 

  28. Chen, X., Cun, X., Pun, C.M., Wang, S.: Shadocnet: learning spatial-aware tokens in transformer for document shadow removal. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 1–5 (2023)

    Google Scholar 

  29. Luo, S., Chen, X., Chen, W., Li, Z., Wang, S., Pun, C.M.: Devignet: high-resolution vignetting removal via a dual aggregated fusion transformer with adaptive channel expansion. In: AAAI Conference on Artificial Intelligence, pp. 4000–4008 (2024)

    Google Scholar 

  30. Li, Z., Chen, X., Guo, S., Wang, S., Pun, C.M.: Wavenhancer: unifying wavelet and transformer for image enhancement. J. Comput. Sci. Technol. 39(2), 336–345 (2024)

    Article  Google Scholar 

  31. Zhou, T., Chen, X., Shen, Y., Nieuwoudt, M., Pun, C.M., Wang, S.: Generative ai enables eeg data augmentation for alzheimer’s disease detection via diffusion model. In: IEEE International Symposium on Product Compliance Engineering - Asia, pp. 1–6 (2023)

    Google Scholar 

  32. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundations of China under Grant 62172403, the Distinguished Young Scholars Fund of Guangdong under Grant 2021B1515020019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqiang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, H., Chen, X., Jin, C., Wang, S. (2024). Structural Brain Network Generation via Brain Denoising Diffusion Probabilistic Model. In: Xie, X., Styles, I., Powathil, G., Ceccarelli, M. (eds) Artificial Intelligence in Healthcare. AIiH 2024. Lecture Notes in Computer Science, vol 14975. Springer, Cham. https://doi.org/10.1007/978-3-031-67278-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-67278-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-67277-4

  • Online ISBN: 978-3-031-67278-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics