Study of Dependency Degree and Bayesian Networks for Conflict Scenarios | SpringerLink
Skip to main content

Study of Dependency Degree and Bayesian Networks for Conflict Scenarios

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2024)

Abstract

The paper delves into analyzing conflict scenarios seen by attribute dependency, emphasizing the interaction between individual attributes. The paper presents two distinct methodologies: attributes dependency degree and Bayesian Networks for attributes. The study investigates the scope to which attributes influence one another within the context of conflict. Through empirical analysis of two real-world cases, the research uncovers significant attributes whose values offer crucial insights into the compatibility or divergence of numerous other attributes. Both methods illuminate attribute connections by employing legible graphical representations, facilitating a deeper understanding of the conflict situation. The findings highlight attributes that emerge as pivotal, providing valuable guidance for negotiation in complex conflict situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deja, R.: Conflict analysis. Int. J. Intell. Syst. 17(2), 235–253 (2002)

    Article  Google Scholar 

  2. Fu, C., Sayed, T.: Bayesian dynamic extreme value modeling for conflict-based real-time safety analysis. Anal. Methods Accident Res. 34, 100204 (2022)

    Article  Google Scholar 

  3. Kitson, N.K., Constantinou, A.C., Guo, Z., Liu, Y., Chobtham, K.: A survey of Bayesian Network structure learning. Artif. Intell. Rev. 56(8), 8721–8814 (2023)

    Article  Google Scholar 

  4. Lang, G., Miao, D., Cai, M.: Three-way decision approaches to conflict analysis using decision-theoretic rough set theory. Inf. Sci. 406, 185–207 (2017)

    Article  Google Scholar 

  5. Lang, G., Miao, D., Fujita, H.: Three-way group conflict analysis based on Pythagorean fuzzy set theory. IEEE Trans. Fuzzy Syst. 28(3), 447–461 (2019)

    Article  Google Scholar 

  6. Pawlak, Z.: An inquiry into anatomy of conflicts. Inf. Sci. 109(1–4), 65–78 (1998)

    Article  MathSciNet  Google Scholar 

  7. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann (1988)

    Google Scholar 

  8. Pearl, J.: Causality. Cambridge University Press (2009)

    Google Scholar 

  9. Przybyła-Kasperek, M., Deja, R., Wakulicz-Deja, A.: Selected Approaches to Conflict Analysis Inspired by the Pawlak Model-Case Study. In: Campagner, A., et al. (eds.) International Joint Conference on Rough Sets, pp. 3–17. Springer, Cham (2023)

    Google Scholar 

  10. Przybyła-Kasperek, M.: Study of selected methods for balancing independent data sets in k-nearest neighbors classifiers with Pawlak conflict analysis. Appl. Soft Comput. 129, 109612 (2022)

    Article  Google Scholar 

  11. Skowron, A., Deja, R.: On some conflict models and conflict resolutions. Rom. J. Inform. Sci. Technol. 3(1–2), 69–82 (2002)

    Google Scholar 

  12. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Słowiński, R. (eds.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, pp. 331–362. Springer, Dordrecht (1992)

    Google Scholar 

  13. Sun, B., Chen, X., Zhang, L., Ma, W.: Three-way decision making approach to conflict analysis and resolution using probabilistic rough set over two universes. Inf. Sci. 507, 809–822 (2020)

    Article  MathSciNet  Google Scholar 

  14. Tang, X., Zeng, T., Tan, Y., Ding, B.: Conflict analysis based on three-way decision theoretic fuzzy rough set over two universes. Ingenierie des Systemes d’Information 25(1), 75 (2020)

    Google Scholar 

  15. Tong, S., Sun, B., Chu, X., Zhang, X., Wang, T., Jiang, C.: Trust recommendation mechanism-based consensus model for Pawlak conflict analysis decision making. Int. J. Approximate Reasoning 135, 91–109 (2021)

    Article  MathSciNet  Google Scholar 

  16. Yao, Y.: Three-way conflict analysis: reformulations and extensions of the Pawlak model. Knowl. Based Syst. 180, 26–37 (2019)

    Google Scholar 

  17. (CCE) The Center for Citizenship Education, Voting Lighthouse application. https://latarnikwyborczy.pl/. Accessed 15 Mar 2024

  18. Waldmann, M.R., Martignon, L.: A Bayesian network model of causal learning. In Proceedings of the Twentieth Annual Conference of the Cognitive Science Society, pp. 1102–1107. Routledge (2022)

    Google Scholar 

  19. Watanabe, S.: A widely applicable Bayesian information criterion. J. Mach. Learn. Res. 14(1), 867–897 (2013)

    MathSciNet  Google Scholar 

  20. Vrieze, S.I.: Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychol. Methods 17(2), 228 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Deja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Przybyła-Kasperek, M., Deja, R. (2024). Study of Dependency Degree and Bayesian Networks for Conflict Scenarios. In: Hu, M., Cornelis, C., Zhang, Y., Lingras, P., Ślęzak, D., Yao, J. (eds) Rough Sets. IJCRS 2024. Lecture Notes in Computer Science(), vol 14839. Springer, Cham. https://doi.org/10.1007/978-3-031-65665-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-65665-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-65664-4

  • Online ISBN: 978-3-031-65665-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics