Abstract
In the context of climate change mitigation, the crucial role of solar energy as an inexhaustible and renewable source is underlined by the widespread integration of photovoltaic (PV) panels. To keep track of the rapid expansion of extensive PV systems (such as solar parks), it is important to keep monitoring their quantity, distribution, and impact. Despite the many complications involved in mapping PV systems, stemming from the diversity of materials and field layouts, many researchers have focused on ways to improve this process through Remote Sensing techniques aided by Machine Learning and Deep Learning. In this study, multiple object-based image (OBIA) classification models were created for mapping large solar parks, using open-source data (Sentinel-2) and computational tools such as Google Earth Engine (GEE) and RStudio. The case study was conducted in Pavagada Solar Park, India, which is the third largest solar park in the world spanning over 153 km\(^2\). For training, validation, and testing purposes two zones within the park were identified. Data were collected for four seasonal periods; a classification model was developed for each season while validating them. The most accurate model was then implemented in the test area. The selection of features for the Random Forest (RF) classifier was done using the Recursive Feature Elimination (RFE) method, with the main objective of eliminating non-relevant features while preserving only the significant ones. This analysis showed a substantial improvement in accuracy, thereby validating the effectiveness of the RFE algorithm in feature selection. This is particularly true in the autumn when a maximum Overall Accuracy (OA) of 88.72% was achieved.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Heinberg, R., Fridley, D.: Our Renewable Future: Laying the Path for One Hundred Percent Clean Energy. Island Press, Washington, DC (2016)
Owusu, P.A., Asumadu-Sarkodie, S.: A review of renewable energy sources, sustainability issues, and climate change mitigation. Cogent Eng. 3(1), 1167990 (2016). https://doi.org/10.1080/23311916.2016.1167990
Omer, A.M.: Energy, environment and sustainable development. Renew. Sustain. Energy Rev. 12(9), 2265–2300 (2008). https://doi.org/10.1016/j.rser.2007.05.001
Kamath, H.G., Ekins-Daukes, N.J., Araki, K., Ramasesha, S.K.: The potential for concentrator photovoltaics: a feasibility study in India. Prog. Photovoltaics Res. Appl. 27(4), 316–327 (2019). https://doi.org/10.1002/pip.3099
Peters, I.M., Liu, H., Reindl, T., Buonassisi, T.: Global prediction of photovoltaic field performance differences using open-source satellite data. Joule 2(2), 307–322 (2018). https://doi.org/10.1016/j.joule.2017.11.012
Ferrara, C., Philipp, D.: Why do PV modules fail? Energy Procedia 15, 379–387 (2012). https://doi.org/10.1016/j.egypro.2012.02.046
Weselek, A., Ehmann, A., Zikeli, S., Lewandowski, I., Schindele, S., Högy, P.: Agrophotovoltaic systems: applications, challenges, and opportunities. A review. Agronomy Sustain. Dev. 39, 1–20 (2019). https://doi.org/10.1007/s13593-019-0581-3
Dunnett, S., Sorichetta, A., Taylor, G., Eigenbrod, F.: Harmonised global datasets of wind and solar farm locations and power. Sci. Data 7(1), 130 (2020). https://doi.org/10.1038/s41597-020-0469-8
Ladisa, C., Capolupo, A., Ripa, M.N., Tarantino, E.: Evaluation of eCognition developer and Orfeo ToolBox performances for segmenting agrophotovoltaic systems from Sentinel-2 images. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds.) International Conference on Computational Science and Its Applications, pp. 466–482. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10545-6-32
Plakman, V., Rosier, J., van Vliet, J.: Solar Park detection from publicly available satellite imagery. GIScience Remote Sens. 59(1), 462–481 (2022). https://doi.org/10.1080/15481603.2022.2036056
Tarantino, E., Figorito, B.: Mapping rural areas with widespread plastic-covered vineyards using true color aerial data. Remote Sens. 4(7), 1913–1928 (2012). https://doi.org/10.3390/rs4071913
Jiménez-Lao, R., Aguilar, M.A., Ladisa, C., Aguilar, F.J., Nemmaoui, A.: Multi-resolution segmentation for extracting plastic greenhouses from Deimos-2 Imagery. ISPRS Ann. Photogram. Remote Sens. Spatial Inf. Sci. 2, 251–258 (2022). https://doi.org/10.5194/isprs-annals-V-2-2022-251-2022
Novelli, A., Tarantino, E., Caradonna, G., Apollonio, C., Balacco, G., Piccinni, F.: Improving the ANN classification accuracy of Landsat data through spectral indices and linear transformations (PCA and TCT) aimed at LU/LC monitoring of a river basin. In: Gervasi, O., et al. (eds.) Computational Science and Its Applications-ICCSA 2016: 16th International Conference, Beijing, China, 4–7 July 2016, Proceedings, Part II 16, pp. 420–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42108-7-32
Ladisa, C., Capolupo, A., Ripa, M.N., Tarantino, E.: Combining OBIA approach and machine learning algorithm to extract photovoltaic panels from Sentinel-2 images automatically. In: Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIV, (vol. 12262, pp. 67–76). SPIE (2022). https://doi.org/10.1117/12.2636451
Xia, Z., et al.: Mapping the rapid development of photovoltaic power stations in Northwestern China using remote sensing. Energy Rep. 8, 4117–4127 (2022). https://doi.org/10.1016/j.egyr.2022.03.039
Wang, M., Cui, Q., Sun, Y., Wang, Q.: Photovoltaic panel extraction from very high-resolution aerial imagery using region-line primitive association analysis and template matching. ISPRS J. Photogram. Remote Sens. 141, 100–111 (2018). https://doi.org/10.1016/j.isprsjprs.2018.04.010
Hou, X., Wang, B., Hu, W., Yin, L., Wu, H.: SolarNet: a deep learning framework to map solar power plants in China from satellite imagery. arXiv preprint arXiv:1912.03685 (2019). https://doi.org/10.48550/arXiv.1912.03685
Chen, Z., Kang, Y., Sun, Z., Wu, F., Zhang, Q.: Extraction of photovoltaic plants using machine learning methods: a case study of the pilot energy City of Golmud, China. Remote Sens. 14(11), 2697 (2022). https://doi.org/10.3390/rs14112697
Blaschke, T.: Object-based image analysis for remote sensing. ISPRS J. Photogram. Remote Sens. 65(1), 2–16 (2010). https://doi.org/10.1016/j.isprsjprs.2009.06.004
Granitto, P.M., Furlanello, C., Biasioli, F., Gasperi, F.: Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemometr. Intell. Lab. Syst. 83(2), 83–90 (2006). https://doi.org/10.1016/j.chemolab.2006.01.007
Novelli, A., Aguilar, M.A., Nemmaoui, A., Aguilar, F.J., Tarantino, E.: Performance evaluation of object-based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: a case study from Almería (Spain). Int. J. Appl. Earth Observ. Geoinf. 52, 403–411 (2016). https://doi.org/10.1016/j.jag.2016.07.011
Yao, Q., Li, H., Gao, P., Guo, H., Zhong, C.: Mapping irregular local climate zones from Sentinel-2 images using deep learning with sequential virtual scenes. Remote Sens. 14(21), 5564 (2022). https://doi.org/10.3390/rs14215564
He, X., et al.: Soil organic carbon prediction using phenological parameters and remote sensing variables generated from Sentinel-2 images. Catena 205, 105442 (2021). https://doi.org/10.1016/j.catena.2021.105442
Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V.R., Murayama, Y., Ranagalage, M.: Sentinel-2 data for land cover/use mapping: a review. Remote Sens. 12(14), 2291 (2020). https://doi.org/10.3390/rs1214229
Drusch, M., et al.: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 120, 25–36 (2012). https://doi.org/10.1016/j.rse.2011.11.026
Berger, M., Moreno, J., Johannessen, J.A., Levelt, P.F., Hanssen, R.F.: ESA’s Sentinel missions in support of Earth system science. Remote Sens. Environ. 120, 84–90 (2012). https://doi.org/10.1016/j.rse.2011.07.023
Sun, H., Wang, L., Lin, R., Zhang, Z., Zhang, B.: Mapping plastic greenhouses with two-temporal Sentinel-2 images and 1D-CNN deep learning. Remote Sens. 13(14), 2820, (2021). https://doi.org/10.3390/rs13142820
Zhang, H., Tian, P., Zhong, J., Liu, Y., Li, J.: Mapping photovoltaic panels in Coastal China using Sentinel-1 and Sentinel-2 images and Google Earth Engine. Remote Sens. 15(15), 3712 (2023). https://doi.org/10.3390/rs15153712
Wang, J., Liu, J., Li, L.: Detecting photovoltaic installations in diverse landscapes using open multi-source remote sensing data. Remote Sens. 14(24), 6296 (2022). https://doi.org/10.3390/rs14246296
Mei, J., Sun, K., Xu, X.: Combing color index and region growing with simple non-iterative clustering for plant segmentation. In: 2021 6th International Conference on Image, Vision and Computing (ICIVC), pp. 119–123. IEEE (2021). https://doi.org/10.1109/ICIVC52351.2021.9526949
Hossain, M.D., Chen, D.: Segmentation for Object-Based Image Analysis (OBIA): a review of algorithms and challenges from remote sensing perspective. ISPRS J. Photogram. Remote Sens. 150, 115–134 (2019). https://doi.org/10.1016/j.isprsjprs.2019.02.009
Achanta, R., Susstrunk, S.: Superpixels and polygons using simple non-iterative clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4651–4660 (2017). https://doi.org/10.1109/CVPR.2017.520
Jia, S., et al.: Multiple feature-based superpixel-level decision fusion for hyperspectral and LiDAR data classification. IEEE Trans. Geosci. Remote Sens. 59(2), 1437–1452 (2022). https://doi.org/10.1109/TGRS.2020.2996599
Wang, G., et al.: Automatic rice early-season mapping based on simple non-iterative clustering and multi-source remote sensing images. Remote Sens. 16(2), 277 (2024). https://doi.org/10.3390/rs16020277
Kuhn, M.: Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008). https://doi.org/10.18637/jss.v028.i05
Ramezan, C.A.: Transferability of Recursive Feature Elimination (RFE)-derived feature sets for support vector machine land cover classification. Remote Sens. 14(24), 6218 (2022). https://doi.org/10.3390/rs14246218
Demarchi, L., Kania, A., Ciȩżkowski, W., Piórkowski, H., Oświecimska-Piasko, Z., Chormański, J.: Recursive feature elimination and random forest classification of Natura 2000 grasslands in lowland river valleys of Poland based on airborne hyperspectral and LiDAR data fusion. Remote Sens. 12(11), 1842 (2020). https://doi.org/10.3390/rs12111842
Misra, P., Yadav, A.S.: Improving the classification accuracy using recursive feature elimination with cross-validation. Int. J. Emerg. Technol 11(3), 659–665 (2020)
Farquad, M.A.H., Bose, I.: Preprocessing unbalanced data using support vector machine. Decis. Support Syst. 53(1), 226–233 (2012). https://doi.org/10.1016/j.dss.2012.01.016
Lee, C.Y., Lee, Z.J.: A novel algorithm applied to classify unbalanced data. Appl. Soft Comput. 12(8), 2481–2485 (2012). https://doi.org/10.1016/j.asoc.2012.03.051
Jhonnerie, R., Siregar, V.P., Nababan, B., Prasetyo, L.B., Wouthuyzen, S.: Random forest classification for mangrove land cover mapping using Landsat 5 TM and ALOS PALSAR imageries. Procedia Environ. Sci. 24, 215–221 (2015). https://doi.org/10.1016/j.proenv.2015.03.028
Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P., Homayouni, S.: Support vector machine versus random forest for remote sensing image classification: a meta-analysis and systematic review. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 13, 6308–6325 (2020). https://doi.org/10.1109/JSTARS.2020.3026724
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324
Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M., Rigol-Sanchez, J.P.: An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 67, 93–104 (2012). https://doi.org/10.1016/j.isprsjprs.2011.11.002
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ladisa, C., Capolupo, A., Tarantino, E. (2024). Optimizing Feature Selection for Solar Park Classification: Approaches with OBIA and Machine Learning. In: Gervasi, O., Murgante, B., Garau, C., Taniar, D., C. Rocha, A.M.A., Faginas Lago, M.N. (eds) Computational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes in Computer Science, vol 14819. Springer, Cham. https://doi.org/10.1007/978-3-031-65282-0_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-65282-0_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-65281-3
Online ISBN: 978-3-031-65282-0
eBook Packages: Computer ScienceComputer Science (R0)