Optimizing Feature Selection for Solar Park Classification: Approaches with OBIA and Machine Learning | SpringerLink
Skip to main content

Optimizing Feature Selection for Solar Park Classification: Approaches with OBIA and Machine Learning

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2024 Workshops (ICCSA 2024)

Abstract

In the context of climate change mitigation, the crucial role of solar energy as an inexhaustible and renewable source is underlined by the widespread integration of photovoltaic (PV) panels. To keep track of the rapid expansion of extensive PV systems (such as solar parks), it is important to keep monitoring their quantity, distribution, and impact. Despite the many complications involved in mapping PV systems, stemming from the diversity of materials and field layouts, many researchers have focused on ways to improve this process through Remote Sensing techniques aided by Machine Learning and Deep Learning. In this study, multiple object-based image (OBIA) classification models were created for mapping large solar parks, using open-source data (Sentinel-2) and computational tools such as Google Earth Engine (GEE) and RStudio. The case study was conducted in Pavagada Solar Park, India, which is the third largest solar park in the world spanning over 153 km\(^2\). For training, validation, and testing purposes two zones within the park were identified. Data were collected for four seasonal periods; a classification model was developed for each season while validating them. The most accurate model was then implemented in the test area. The selection of features for the Random Forest (RF) classifier was done using the Recursive Feature Elimination (RFE) method, with the main objective of eliminating non-relevant features while preserving only the significant ones. This analysis showed a substantial improvement in accuracy, thereby validating the effectiveness of the RFE algorithm in feature selection. This is particularly true in the autumn when a maximum Overall Accuracy (OA) of 88.72% was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heinberg, R., Fridley, D.: Our Renewable Future: Laying the Path for One Hundred Percent Clean Energy. Island Press, Washington, DC (2016)

    Google Scholar 

  2. Owusu, P.A., Asumadu-Sarkodie, S.: A review of renewable energy sources, sustainability issues, and climate change mitigation. Cogent Eng. 3(1), 1167990 (2016). https://doi.org/10.1080/23311916.2016.1167990

  3. Omer, A.M.: Energy, environment and sustainable development. Renew. Sustain. Energy Rev. 12(9), 2265–2300 (2008). https://doi.org/10.1016/j.rser.2007.05.001

    Article  MathSciNet  Google Scholar 

  4. Kamath, H.G., Ekins-Daukes, N.J., Araki, K., Ramasesha, S.K.: The potential for concentrator photovoltaics: a feasibility study in India. Prog. Photovoltaics Res. Appl. 27(4), 316–327 (2019). https://doi.org/10.1002/pip.3099

    Article  Google Scholar 

  5. Peters, I.M., Liu, H., Reindl, T., Buonassisi, T.: Global prediction of photovoltaic field performance differences using open-source satellite data. Joule 2(2), 307–322 (2018). https://doi.org/10.1016/j.joule.2017.11.012

    Article  Google Scholar 

  6. Ferrara, C., Philipp, D.: Why do PV modules fail? Energy Procedia 15, 379–387 (2012). https://doi.org/10.1016/j.egypro.2012.02.046

    Article  Google Scholar 

  7. Weselek, A., Ehmann, A., Zikeli, S., Lewandowski, I., Schindele, S., Högy, P.: Agrophotovoltaic systems: applications, challenges, and opportunities. A review. Agronomy Sustain. Dev. 39, 1–20 (2019). https://doi.org/10.1007/s13593-019-0581-3

  8. Dunnett, S., Sorichetta, A., Taylor, G., Eigenbrod, F.: Harmonised global datasets of wind and solar farm locations and power. Sci. Data 7(1), 130 (2020). https://doi.org/10.1038/s41597-020-0469-8

    Article  Google Scholar 

  9. Ladisa, C., Capolupo, A., Ripa, M.N., Tarantino, E.: Evaluation of eCognition developer and Orfeo ToolBox performances for segmenting agrophotovoltaic systems from Sentinel-2 images. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds.) International Conference on Computational Science and Its Applications, pp. 466–482. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10545-6-32

  10. Plakman, V., Rosier, J., van Vliet, J.: Solar Park detection from publicly available satellite imagery. GIScience Remote Sens. 59(1), 462–481 (2022). https://doi.org/10.1080/15481603.2022.2036056

    Article  Google Scholar 

  11. Tarantino, E., Figorito, B.: Mapping rural areas with widespread plastic-covered vineyards using true color aerial data. Remote Sens. 4(7), 1913–1928 (2012). https://doi.org/10.3390/rs4071913

    Article  Google Scholar 

  12. Jiménez-Lao, R., Aguilar, M.A., Ladisa, C., Aguilar, F.J., Nemmaoui, A.: Multi-resolution segmentation for extracting plastic greenhouses from Deimos-2 Imagery. ISPRS Ann. Photogram. Remote Sens. Spatial Inf. Sci. 2, 251–258 (2022). https://doi.org/10.5194/isprs-annals-V-2-2022-251-2022

  13. Novelli, A., Tarantino, E., Caradonna, G., Apollonio, C., Balacco, G., Piccinni, F.: Improving the ANN classification accuracy of Landsat data through spectral indices and linear transformations (PCA and TCT) aimed at LU/LC monitoring of a river basin. In: Gervasi, O., et al. (eds.) Computational Science and Its Applications-ICCSA 2016: 16th International Conference, Beijing, China, 4–7 July 2016, Proceedings, Part II 16, pp. 420–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42108-7-32

  14. Ladisa, C., Capolupo, A., Ripa, M.N., Tarantino, E.: Combining OBIA approach and machine learning algorithm to extract photovoltaic panels from Sentinel-2 images automatically. In: Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIV, (vol. 12262, pp. 67–76). SPIE (2022). https://doi.org/10.1117/12.2636451

  15. Xia, Z., et al.: Mapping the rapid development of photovoltaic power stations in Northwestern China using remote sensing. Energy Rep. 8, 4117–4127 (2022). https://doi.org/10.1016/j.egyr.2022.03.039

    Article  Google Scholar 

  16. Wang, M., Cui, Q., Sun, Y., Wang, Q.: Photovoltaic panel extraction from very high-resolution aerial imagery using region-line primitive association analysis and template matching. ISPRS J. Photogram. Remote Sens. 141, 100–111 (2018). https://doi.org/10.1016/j.isprsjprs.2018.04.010

    Article  Google Scholar 

  17. Hou, X., Wang, B., Hu, W., Yin, L., Wu, H.: SolarNet: a deep learning framework to map solar power plants in China from satellite imagery. arXiv preprint arXiv:1912.03685 (2019). https://doi.org/10.48550/arXiv.1912.03685

  18. Chen, Z., Kang, Y., Sun, Z., Wu, F., Zhang, Q.: Extraction of photovoltaic plants using machine learning methods: a case study of the pilot energy City of Golmud, China. Remote Sens. 14(11), 2697 (2022). https://doi.org/10.3390/rs14112697

  19. Blaschke, T.: Object-based image analysis for remote sensing. ISPRS J. Photogram. Remote Sens. 65(1), 2–16 (2010). https://doi.org/10.1016/j.isprsjprs.2009.06.004

  20. Granitto, P.M., Furlanello, C., Biasioli, F., Gasperi, F.: Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemometr. Intell. Lab. Syst. 83(2), 83–90 (2006). https://doi.org/10.1016/j.chemolab.2006.01.007

    Article  Google Scholar 

  21. Novelli, A., Aguilar, M.A., Nemmaoui, A., Aguilar, F.J., Tarantino, E.: Performance evaluation of object-based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: a case study from Almería (Spain). Int. J. Appl. Earth Observ. Geoinf. 52, 403–411 (2016). https://doi.org/10.1016/j.jag.2016.07.011

  22. Yao, Q., Li, H., Gao, P., Guo, H., Zhong, C.: Mapping irregular local climate zones from Sentinel-2 images using deep learning with sequential virtual scenes. Remote Sens. 14(21), 5564 (2022). https://doi.org/10.3390/rs14215564

  23. He, X., et al.: Soil organic carbon prediction using phenological parameters and remote sensing variables generated from Sentinel-2 images. Catena 205, 105442 (2021). https://doi.org/10.1016/j.catena.2021.105442

    Article  Google Scholar 

  24. Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V.R., Murayama, Y., Ranagalage, M.: Sentinel-2 data for land cover/use mapping: a review. Remote Sens. 12(14), 2291 (2020). https://doi.org/10.3390/rs1214229

  25. Drusch, M., et al.: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 120, 25–36 (2012). https://doi.org/10.1016/j.rse.2011.11.026

  26. Berger, M., Moreno, J., Johannessen, J.A., Levelt, P.F., Hanssen, R.F.: ESA’s Sentinel missions in support of Earth system science. Remote Sens. Environ. 120, 84–90 (2012). https://doi.org/10.1016/j.rse.2011.07.023

  27. Sun, H., Wang, L., Lin, R., Zhang, Z., Zhang, B.: Mapping plastic greenhouses with two-temporal Sentinel-2 images and 1D-CNN deep learning. Remote Sens. 13(14), 2820, (2021). https://doi.org/10.3390/rs13142820

  28. Zhang, H., Tian, P., Zhong, J., Liu, Y., Li, J.: Mapping photovoltaic panels in Coastal China using Sentinel-1 and Sentinel-2 images and Google Earth Engine. Remote Sens. 15(15), 3712 (2023). https://doi.org/10.3390/rs15153712

  29. Wang, J., Liu, J., Li, L.: Detecting photovoltaic installations in diverse landscapes using open multi-source remote sensing data. Remote Sens. 14(24), 6296 (2022). https://doi.org/10.3390/rs14246296

    Article  Google Scholar 

  30. Mei, J., Sun, K., Xu, X.: Combing color index and region growing with simple non-iterative clustering for plant segmentation. In: 2021 6th International Conference on Image, Vision and Computing (ICIVC), pp. 119–123. IEEE (2021). https://doi.org/10.1109/ICIVC52351.2021.9526949

  31. Hossain, M.D., Chen, D.: Segmentation for Object-Based Image Analysis (OBIA): a review of algorithms and challenges from remote sensing perspective. ISPRS J. Photogram. Remote Sens. 150, 115–134 (2019). https://doi.org/10.1016/j.isprsjprs.2019.02.009

    Article  Google Scholar 

  32. Achanta, R., Susstrunk, S.: Superpixels and polygons using simple non-iterative clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4651–4660 (2017). https://doi.org/10.1109/CVPR.2017.520

  33. Jia, S., et al.: Multiple feature-based superpixel-level decision fusion for hyperspectral and LiDAR data classification. IEEE Trans. Geosci. Remote Sens. 59(2), 1437–1452 (2022). https://doi.org/10.1109/TGRS.2020.2996599

  34. Wang, G., et al.: Automatic rice early-season mapping based on simple non-iterative clustering and multi-source remote sensing images. Remote Sens. 16(2), 277 (2024). https://doi.org/10.3390/rs16020277

    Article  Google Scholar 

  35. Kuhn, M.: Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008). https://doi.org/10.18637/jss.v028.i05

  36. Ramezan, C.A.: Transferability of Recursive Feature Elimination (RFE)-derived feature sets for support vector machine land cover classification. Remote Sens. 14(24), 6218 (2022). https://doi.org/10.3390/rs14246218

    Article  Google Scholar 

  37. Demarchi, L., Kania, A., Ciȩżkowski, W., Piórkowski, H., Oświecimska-Piasko, Z., Chormański, J.: Recursive feature elimination and random forest classification of Natura 2000 grasslands in lowland river valleys of Poland based on airborne hyperspectral and LiDAR data fusion. Remote Sens. 12(11), 1842 (2020). https://doi.org/10.3390/rs12111842

    Article  Google Scholar 

  38. Misra, P., Yadav, A.S.: Improving the classification accuracy using recursive feature elimination with cross-validation. Int. J. Emerg. Technol 11(3), 659–665 (2020)

    Google Scholar 

  39. Farquad, M.A.H., Bose, I.: Preprocessing unbalanced data using support vector machine. Decis. Support Syst. 53(1), 226–233 (2012). https://doi.org/10.1016/j.dss.2012.01.016

    Article  Google Scholar 

  40. Lee, C.Y., Lee, Z.J.: A novel algorithm applied to classify unbalanced data. Appl. Soft Comput. 12(8), 2481–2485 (2012). https://doi.org/10.1016/j.asoc.2012.03.051

    Article  Google Scholar 

  41. Jhonnerie, R., Siregar, V.P., Nababan, B., Prasetyo, L.B., Wouthuyzen, S.: Random forest classification for mangrove land cover mapping using Landsat 5 TM and ALOS PALSAR imageries. Procedia Environ. Sci. 24, 215–221 (2015). https://doi.org/10.1016/j.proenv.2015.03.028

    Article  Google Scholar 

  42. Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P., Homayouni, S.: Support vector machine versus random forest for remote sensing image classification: a meta-analysis and systematic review. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 13, 6308–6325 (2020). https://doi.org/10.1109/JSTARS.2020.3026724

  43. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  44. Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M., Rigol-Sanchez, J.P.: An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 67, 93–104 (2012). https://doi.org/10.1016/j.isprsjprs.2011.11.002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Ladisa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ladisa, C., Capolupo, A., Tarantino, E. (2024). Optimizing Feature Selection for Solar Park Classification: Approaches with OBIA and Machine Learning. In: Gervasi, O., Murgante, B., Garau, C., Taniar, D., C. Rocha, A.M.A., Faginas Lago, M.N. (eds) Computational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes in Computer Science, vol 14819. Springer, Cham. https://doi.org/10.1007/978-3-031-65282-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-65282-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-65281-3

  • Online ISBN: 978-3-031-65282-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics