Advancing Sustainable Water Management in Southern Italy Through Integrated Hydrological Modeling and Earth Observation | SpringerLink
Skip to main content

Advancing Sustainable Water Management in Southern Italy Through Integrated Hydrological Modeling and Earth Observation

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2024 Workshops (ICCSA 2024)

Abstract

In water-scarce regions, effective water resource management is crucial for performing sustainable agriculture. Scientists and decision-makers increasingly exploit the coupled use of hydrological and crop models to address resource conservation and productivity challenges. While emphasizing crop system performance and environmental impact assessment, equal attention is needed for ensuring sustainable crop production and effective water management.

In response to these needs, the Italian Space Agency (ASI), within the framework of the I4DP-SCIENCE programme, supports the collaborative THETIS project (EarTH Observation for the Early forecasT of Irrigation needS; Agreement n. 2023-52-HH.0).

THETIS aims at developing a spatial decision support system that integrates hydrologic and crop growth models with advanced Earth observation (EO) products, Artificial Intelligence, and a WEBGIS interface. Starting activities focus on processing tomatoes, which are highly water-demanding. A synergic data exchange between models is established to provide estimates of water needs before, at the beginning, and during the irrigation season with periodic updates.

An essential component of the project entails producing estimated time series of root zone soil moisture, crucial for initializing the AquaCrop model and evaluating the water balance within the designated fields. To accomplish this task, in the THETIS project a joint use of the daily basin-scale hydrological model DREAM and the physically based Soil Moisture Analytical Relationship (SMAR) model forming a Soil Water Balance (SWB) module is proposed.

This paper provides a brief contextualization of the THETIS project focusing on the need for reliable estimations of soil moisture dynamics. To this end a review of the existing application of SMAR model is presented. It helped to draw remarks about the main challenges and perspectives of use of the model within a context where soil moisture may be strongly influenced by irrigation volumes and agricultural practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albergel, C., et al.: From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations. Hydrol. Earth Syst. Sci. Discuss. 5, 1603–1640 (2008). https://doi.org/10.5194/hessd-5-1603-2008

    Article  Google Scholar 

  • Ansari, H., Hassanpour, M.: Design and construction of REC-P55 for reading of soil moisture, temperature and salinity. Iran. J. Irrig. Drainage 9(1), 32–43 (2015)

    Google Scholar 

  • Baldwin, D., Manfreda, S., Keller, K., Smithwick, E.A.H.: Predicting root zone soil moisture with soil properties and satellite near-surface moisture data across the conterminous United States. J. Hydrol. 546, 393–404 (2017)

    Article  Google Scholar 

  • Baldwin, D., Manfreda, S., Lin, H., Smithwick, E.A.: Estimating root zone soil moisture across the Eastern United States with passive microwave satellite data and a simple hydrologic model. Remote Sens. 11(17), 2013 (2019)

    Article  Google Scholar 

  • Baldocchi, D., Novick, K., Keenan, T., Torn, M.: AmeriFlux: its impact on our understanding of the ‘breathing of the biosphere’, after 25 years. Agric. For. Meteorol. 348, 109929 (2024)

    Article  Google Scholar 

  • Bauer-Marschallinger, B., et al.: Soil moisture from fusion of scatterometer and SAR: closing the scale gap with temporal filtering. Remote Sens. 10(7), 1030 (2018)

    Google Scholar 

  • Brocca, L., Moramarco, T., Melone, F., Wagner, W., Hasenauer, S., Hahn, S.: Assimilation of surface- and root-zone ASCAT soil moisture products into rainfall– runoff modeling. IEEE Trans. Geosci. Remote Sens. 50(7), 2542–2555 (2012)

    Article  Google Scholar 

  • De Rosnay, P., Drusch, M., Vasiljevic, D., Balsamo, G., Albergel, C., Isaksen, L.: A simplified extended Kalman filter for the global operational soil moisture analysis at ECMWF. Q. J. R. Meteorol. Soc. 139(674), 1199–1213 (2013)

    Article  Google Scholar 

  • De Santis, D.: Assimilation of satellite soil moisture in hydrological modeling: assessment of observations preprocessing and error characterization methods. PhD Thesis. University of Calabria (2018)

    Google Scholar 

  • Dharssi, I., Bovis, K., Macpherson, B., Jones, C.: Assimilation of ASCAT surface soil wetness. Met Office, Exeter, UK Forecasting. Technical Report, vol. 548 (2010)

    Google Scholar 

  • Entekhabi, D., et al.: The soil moisture active passive (SMAP) mission. Proc. IEEE 98(5), 704–716 (2010)

    Article  Google Scholar 

  • Faridani, F., Farid, A., Ansari, H., Manfreda, S.: Estimation of the root-zone soil moisture using passive microwave remote sensing and SMAR model. J. Irrigation Drainage Eng. ASCE 143(1), 04016070 (2016)

    Google Scholar 

  • Faridani, F., Farid, A., Ansari, H., Manfreda, S.: A modified version of the SMAR model for estimating root-zone soil moisture from time-series of surface soil moisture. Water SA 43(3), 492–498 (2017)

    Article  Google Scholar 

  • Farokhi, M., Faridani, F., Lasaponara, R., Ansari, H., Faridhosseini, A.: Enhanced estimation of root zone soil moisture at 1 km resolution using SMAR model and MODIS-based downscaled AMSR2 soil moisture data. Sensors 21(15), 5211 (2021)

    Article  Google Scholar 

  • Gheybi, F., et al.: Soil moisture monitoring in Iran by implementing satellite data into the root-zone SMAR model. Hydrology 6(2), 44 (2019)

    Article  Google Scholar 

  • González-Zamora, A., Sánchez, N., Martínez-Fernández, J., Wagner, W.: Root-zone plant available water estimation using the SMOS-derived soil water index. Adv. Water Resour. 96, 339–353 (2016)

    Article  Google Scholar 

  • Green, W.H., Ampt, G.A.: Studies on soil Phyics. J. Agric. Sci. 4(1), 1–24 (1911)

    Article  Google Scholar 

  • Kerr, Y.H., Waldteufel, P., Wigneron, J.P., Martinuzzi, J.M., Font, J., Berger, M.: Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 39, 1729–1735 (2001). https://doi.org/10.1109/36.942551

    Article  Google Scholar 

  • Laio, F.: A vertically extended stochastic model of soil moisture in the root zone. Water Resour. Res. 42, W02406 (2006). https://doi.org/10.1029/2005WR004502

    Article  Google Scholar 

  • Li, M., Sun, H., Zhao, R.: A review of root zone soil moisture estimation methods based on remote sensing. Remote Sens. 15(22), 5361 (2023)

    Article  Google Scholar 

  • Lin, H.S., Kogelmann, W., Walker, C., Bruns, M.A.: Soil moisture patterns in a forested catchment: a hydropedological perspective. Geoderma 131(3–4), 345–368 (2006)

    Article  Google Scholar 

  • Liu, H., Lin, H.: Frequency and control of subsurface preferential flow: from Pedon to catchment scales. Soil Sci. Soc. Am. J. 79(2), 362–377 (2015)

    Article  Google Scholar 

  • Manfreda, S., Brocca, L., Moramarco, T., Melone, F., Sheffield, J.: A physically based approach for the estimation of root-zone soil moisture from surface measurements. Hydrol. Earth Syst. Sci. 18(3), 1199–1212 (2014)

    Article  Google Scholar 

  • Manfreda, S., Fiorentino, M., Iacobellis, V.: DREAM: a distributed model for runoff, evapotranspiration, and antecedent soil moisture simulation. Adv. Geosci. 2, 31–39 (2005)

    Article  Google Scholar 

  • Manfreda, S., Fiorentino, M., Samela, C., Margiotta, M.R., Moramarco, T., Brocca, L.: A physically based approach for the estimation of root-zone soil moisture from surface measurements: application on the AMMA database. Hydrology Days 2013 (2013)

    Google Scholar 

  • Patil, A., Ramsankaran, R.A.A.J.: Improved streamflow simulations by coupling soil moisture analytical relationship in EnKF based hydrological data assimilation framework. Adv. Water Resour. 121, 173–188 (2018)

    Article  Google Scholar 

  • Paulik, C., Dorigo, W., Wagner, W., Kidd, R.: Validation of the ASCAT Soil Water Index using in-situ data from the international soil moisture network. Int. J. Appl. Earth Obs. Geoinf. 30, 1–8 (2014)

    Google Scholar 

  • Rasche, D., Blume, T., Güntner, A.: Depth-extrapolation of field-scale soil moisture time series derived with cosmic-ray neutron sensing using the SMAR model. EGUsphere 2024, 1–49 (2024)

    Google Scholar 

  • Qiu, J., Crow, W.T., Nearing, G.S., Mo, X., Liu, S.: The impact of vertical measurement depth on the information content of soil moisture times series data. Geophys. Res. Lett. 41, 4997–5004 (2014)

    Article  Google Scholar 

  • Schaefer, G.L., Cosh, M.H., Jackson, T.J.: The USDA natural resources conservation service soil climate analysis network (SCAN). J. Atmos. Oceanic Tech. 24(12), 2073–2077 (2007)

    Article  Google Scholar 

  • Souissi, R., et al.: Integrating process-related information into an artificial neural network for root-zone soil moisture prediction. Hydrol. Earth Syst. Sci. 26(12), 3263–3297 (2022)

    Article  Google Scholar 

  • Tobin, K.J., Torres, R., Crow, W.T., Bennett, M.E.: Multi-decadal analysis of root-zone soil moisture applying the exponential filter across CONUS. Hydrol. Earth Syst. Sci. 21, 4403–4417 (2017)

    Article  Google Scholar 

  • Wagner, W., et al.: The ASCAT soil moisture product: a review of its. Meteorologische Zeitschrift, 22(1), 1–29 (2013). Wagner, W., Lemoine, G., Rott, H.: A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ. 70(2), 191– 207 (1999)

    Google Scholar 

  • Zhang, N., Quiring, S., Ochsner, T., Ford, T.: Comparison of three methods for vertical extrapolation of soil moisture in Oklahoma. Vadose Zone J. 16(10), 1–19 (2017). https://doi.org/10.2136/vzj2017.04.0085

    Article  Google Scholar 

  • Zhao, T., Shi, J., Lv, L.: Soil moisture experiment in the Luan River supporting new satellite mission opportunities. Remote Sens. Environ. 240, 111680 (2020)

    Article  Google Scholar 

  • Zheng, C., Jia, L., Zhao, T.: A 21-year dataset (2000–2020) of gap-free global daily surface soil moisture at 1-km grid resolution. Sci. Data 10, 139 (2023)

    Article  Google Scholar 

  • Zhuang, R., Zeng, Y., Manfreda, S., Su, Z.: Quantifying long-term land surface and root zone soil moisture over Tibetan Plateau. Remote Sens. 12(3), 509 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Iacobellis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iacobellis, V. et al. (2024). Advancing Sustainable Water Management in Southern Italy Through Integrated Hydrological Modeling and Earth Observation. In: Gervasi, O., Murgante, B., Garau, C., Taniar, D., C. Rocha, A.M.A., Faginas Lago, M.N. (eds) Computational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes in Computer Science, vol 14819. Springer, Cham. https://doi.org/10.1007/978-3-031-65282-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-65282-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-65281-3

  • Online ISBN: 978-3-031-65282-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics