Benefits of Digital Twin Applications Used to Study Product Design and Development Processes | SpringerLink
Skip to main content

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 701))

Included in the following conference series:

  • 374 Accesses

Abstract

Fast-paced technological advancements and ever-growing demand for customized products trigger the need for a transition from traditional manufacturing to intelligent manufacturing. This review paper focuses on identifying the benefits of Digital Twin applications for the theme of product development processes. Benefits are analyzed according to the 10 knowledge areas defined by the Project Management Institute’s project management body of knowledge (PMBOK). Classification by knowledge area helps to understand where benefits can best be found according to desirable product characteristics and corporate goals. This paper analyzes which PMBOK knowledge area has proven, practical applications and sound theoretical underpinning, thus indicating the likelihood of a successful implementation of Digital Twin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 15729
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sassanelli, C., Rossi, M., Terzi, S.: Evaluating the smart maturity of manufacturing companies along the product development process to set a PLM project roadmap. Int. J. Prod. Lifecycle Manag. 12(3), 185–209 (2020)

    Article  Google Scholar 

  2. Ríos, J., Staudter, G., Weber, M., Anderl, R.: Enabling the digital twin: a review of the modelling of measurement uncertainty on data transfer standards and its relationship with data from tests. Int. J. Prod. Lifecycle Manag. 12(3), 250–268 (2020)

    Article  Google Scholar 

  3. Liu, M., Fang, S., Dong, H., Xu, C.: Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 58, 346–361 (2021)

    Article  Google Scholar 

  4. Fuller, A., Fan, Z., Day, C., Barlow, C.: Digital twin: enabling technologies, challenges and open research. IEEE Access 8, 108952–108971 (2020)

    Article  Google Scholar 

  5. Ríos, J., Staudter, G., Weber, M., Anderl, R., Bernard, A.: Uncertainty of data and the digital twin: a review. Int. J. Prod. Lifecycle Manag. 12(4), 329–358 (2020)

    Article  Google Scholar 

  6. Lo, C., Chen, C., Zhong, R.Y.: A review of digital twin in product design and development. Adv. Eng. Inform. 48, 101297 (2021)

    Article  Google Scholar 

  7. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital Twin in manufacturing: a categorical literature review and classification. Ifac-PapersOnline 51(11), 1016–1022 (2018)

    Article  Google Scholar 

  8. Phanden, R.K., Sharma, P., Dubey, A.: A review on simulation in digital twin for aerospace, manufacturing and robotics. Mater. Today Proc. 38, 174–178 (2021)

    Article  Google Scholar 

  9. Zhang, M., Sui, F., Liu, A., Tao, F., Nee, A.: Digital twin driven smart product design framework. In: Digital Twin Driven Smart Design, pp. 3–32. Elsevier (2020)

    Google Scholar 

  10. Holler, M., Uebernickel, F., Brenner, W.: Digital twin concepts in manufacturing industries-a literature review and avenues for further research. In: Proceedings of the 18th International Conference on Industrial Engineering (IJIE), Seoul, Korea, pp. 10–12 (2016)

    Google Scholar 

  11. Rose, K.H., Indelicato, G.: Book Review: A Guide to the Project Management Body of Knowledge (PMBOK® Guide). SAGE Publications, Los Angeles (2009)

    Google Scholar 

  12. Wu, Y., Zhou, L., Zheng, P., Sun, Y., Zhang, K.: A digital twin-based multidisciplinary collaborative design approach for complex engineering product development. Adv. Eng. Inform. 52, 101635 (2022)

    Article  Google Scholar 

  13. Lin, T.Y., et al.: Evolutionary digital twin: a new approach for intelligent industrial product development. Adv. Eng. Inform. 47, 101209 (2021)

    Article  Google Scholar 

  14. Li, L., Li, H., Gu, F., Ding, N., Gu, X., Luo, G.: Multidisciplinary collaborative design modeling technologies for complex mechanical products based on digital twin. Comput. Integr. Manuf. Syst. 25(6), 1307–1319 (2019)

    Google Scholar 

  15. Hu, T., Kong, T., Ye, Y., Tao, F., Nee, A.: Digital twin based computerized numerical control machine tool virtual prototype design. In: Digital Twin Driven Smart Design, pp. 237–263. Elsevier (2020)

    Google Scholar 

  16. Zhang, Y.-X., et al.: Digital twin accelerating development of metallized film capacitor: Key issues, framework design and prospects. Energy Rep. 7, 7704–7715 (2021)

    Article  MathSciNet  Google Scholar 

  17. Tao, F., et al.: Digital twin-driven product design framework. Int. J. Prod. Res. 57(12), 3935–3953 (2019)

    Article  Google Scholar 

  18. Jones, D.E., Snider, C., Kent, L., Hicks, B.: Early stage digital twins for early stage engineering design. In: Proceedings of the Design Society: International Conference on Engineering Design, vol. 1, no. 1, pp. 2557–2566. Cambridge University Press (2019)

    Google Scholar 

  19. Yi, Y., Yan, Y., Liu, X., Ni, Z., Feng, J., Liu, J.: Digital twin-based smart assembly process design and application framework for complex products and its case study. J. Manuf. Syst. 58, 94–107 (2021)

    Article  Google Scholar 

  20. Xie, Y., Lian, K., Liu, Q., Zhang, C., Liu, H.: Digital twin for cutting tool: modeling, application and service strategy. J. Manuf. Syst. 58, 305–312 (2021)

    Article  Google Scholar 

  21. Wagner, R., Schleich, B., Haefner, B., Kuhnle, A., Wartzack, S., Lanza, G.: Challenges and potentials of digital twins and industry 4.0 in product design and production for high performance products. Procedia CIRP 84, 88–93 (2019)

    Article  Google Scholar 

  22. Lim, K.Y.H., Zheng, P., Chen, C.-H., Huang, L.: A digital twin-enhanced system for engineering product family design and optimization. J. Manuf. Syst. 57, 82–93 (2020)

    Article  Google Scholar 

  23. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F.: Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 94, 3563–3576 (2018)

    Article  Google Scholar 

  24. Hu, C., Gao, W., Xu, C., Ben, K.: Study on the application of digital twin technology in complex electronic equipment. In: Duan, B., Umeda, K., Hwang, W. (eds.) Proceedings of the Seventh Asia International Symposium on Mechatronics. LNEE, vol. 589, pp. 123–137. Springer, Singapore (2020). https://doi.org/10.1007/978-981-32-9441-7_14

    Chapter  Google Scholar 

  25. Ma, J., et al.: A digital twin-driven production management system for production workshop. Int. J. Adv. Manuf. Technol. 110, 1385–1397 (2020)

    Article  Google Scholar 

  26. Wang, C., Li, Y.: Digital-twin-aided product design framework for IoT platforms. IEEE Internet Things J. 9(12), 9290–9300 (2021)

    Article  Google Scholar 

  27. Huang, S., Wang, G., Lei, D., Yan, Y.: Toward digital validation for rapid product development based on digital twin: a framework. Int. J. Adv. Manuf. Technol., 1–15 (2022)

    Google Scholar 

  28. Cheng, Z., Tong, S., Tong, Z., Zhang, Q.: Review of digital design and digital twin of industrial boiler. J. ZheJiang Univ. (Eng. Sci.) 55(8), 1518–1528 (2021)

    Google Scholar 

  29. Hao, L., Fei, T., Haoqi, W.: Integration framework and key technologies of complex product design-manufacturing based on digital twin. Comput. Integr. Manuf. Syst. 25(6), 1320–1336 (2019)

    Google Scholar 

  30. Zhao, H., Zhao, N., Zhang, S.: Factory design approach based on value stream mapping and digital twin. Comput. Integr. Manuf. Syst. 25(06), 1481–1490 (2019)

    Google Scholar 

  31. Zhang, X., Zhu, W.: Application framework of digital twin-driven product smart manufacturing system: a case study of aeroengine blade manufacturing. Int. J. Adv. Rob. Syst. 16(5), 1729881419880663 (2019)

    Google Scholar 

  32. Mourtzis, D., Angelopoulos, J., Panopoulos, N.: Equipment design optimization based on digital twin under the framework of zero-defect manufacturing. Procedia Comput. Sci. 180, 525–533 (2021)

    Article  Google Scholar 

  33. Wang, L.: Application and development prospect of digital twin technology in aerospace. IFAC-PapersOnLine 53(5), 732–737 (2020)

    Article  Google Scholar 

  34. Li, X., Hou, X., Yang, M., Wang, L., Wang, Y.: Construction and application of CMF design service model for industrial products driven by digital twins. Comput. Integr. Manuf. Syst. 27(02), 307–327 (2021)

    Google Scholar 

  35. Guang, J., Jianguo, H., Zhenwei, Z.: Design scheme of virtual twin system for UAV combat. Acta Armamentarii 43(8), 1902 (2022)

    Google Scholar 

  36. Kaiyu, L., Qi, C., Xinxin, C., Yuqing, C., Liu, P., Yifang, Z.: Application of digital twin technology in the design phase of floating nuclear power plants. 核动力工程 43(1), 197–201 (2022)

    Google Scholar 

  37. Zhang, P., Feng, H., Yang, T., Zhao, B., Sun, J., Tan, R.: Innovative design process model of TRIZ and digital twin integration iterative evolution based on parameter deduction. Comput. Integr. Manuf. Syst. 25(6), 1361–1370 (2019)

    Google Scholar 

  38. Mendi, A.F., Erol, T., Doğan, D.: Digital twin in the military field. IEEE Internet Comput. 26(5), 33–40 (2021)

    Article  Google Scholar 

  39. Farsi, M., Ariansyah, D., Erkoyuncu, J.A., Harrison, A.: A digital twin architecture for effective product lifecycle cost estimation. Procedia CIRP 100, 506–511 (2021)

    Article  Google Scholar 

  40. Zheng, P., Lim, K.Y.H.: Product family design and optimization: a digital twin-enhanced approach. Procedia CIRP 93, 246–250 (2020)

    Article  Google Scholar 

  41. de Oliveira Hansen, J.P., da Silva, E.R., Bilberg, A., Bro, C.: Design and development of automation equipment based on digital twins and virtual commissioning. Procedia CIRP 104, 1167–1172 (2021)

    Google Scholar 

  42. Zhuang, C., Liu, J., Xiong, H., Ding, X., Liu, S., Weng, G.: Connotation, architecture and trends of product digital twin. Comput. Integr. Manuf. Syst. 23(4), 753–768 (2017)

    Google Scholar 

  43. Songhua, M., Kaixin, H., Tianliang, H.: Digital twins of fixtures supporting rapid design and performance tracking. Comput. Integr. Manuf. Syst. 28(9), 2718 (2022)

    Google Scholar 

  44. Yan, Y.: Digital twin based optimization design method for aerospace electric thruster. J. Astronaut. 43(4), 518 (2022)

    Google Scholar 

  45. Jinjiang, W., Haotian, Y., Fengli, Z., Laibin, Z.: Design and development of intelligent oil and gas stations based on digital twin

    Google Scholar 

  46. Tao, F., et al.: Digital twin and its potential application exploration. Comput. Integr. Manuf. Syst. 24(1), 1–18 (2018)

    Google Scholar 

  47. Li, H., et al.: Concept, system structure and operating mode of industrial digital twin system. Comput. Integr. Manuf. Syst. 27(12), 3373–3390 (2021)

    Google Scholar 

  48. Cai, H., Zhu, J., Zhang, W.: Quality deviation control for aircraft using digital twin. J. Comput. Inf. Sci. Eng. 21(3) (2021)

    Google Scholar 

  49. Li, S., Wang, J., Rong, J., Wei, W.: A digital twin framework for product to-be-designed analysis based on operation data. Procedia CIRP 109, 179–184 (2022)

    Article  Google Scholar 

  50. Kim, J.-W., Kim, S.-A.: Prototyping-based design process integrated with digital-twin: a fundamental study. J. KIBIM 9(4), 51–61 (2019)

    Google Scholar 

  51. Xie, J., Wang, X., Yang, Z.: Design and operation mode of production system of fully mechanized coal mining face based on digital twin theory. Comput. Integr. Manuf. Syst. 25(6), 1381–1391 (2019)

    Google Scholar 

Download references

Acknowledgement

This research was funded by the Natural Science and Engineering Research Council for the Canadian authors and by the National Natural Science Foundation of China (No. 52275277) for the Chinese authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milad Attari Shendi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shendi, M.A., Thomson, V., Wang, H., Lou, G. (2024). Benefits of Digital Twin Applications Used to Study Product Design and Development Processes. In: Danjou, C., Harik, R., Nyffenegger, F., Rivest, L., Bouras, A. (eds) Product Lifecycle Management. Leveraging Digital Twins, Circular Economy, and Knowledge Management for Sustainable Innovation. PLM 2023. IFIP Advances in Information and Communication Technology, vol 701. Springer, Cham. https://doi.org/10.1007/978-3-031-62578-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62578-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62577-0

  • Online ISBN: 978-3-031-62578-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics