SGAN: Appliance Signatures Data Generation for NILM Applications Using GANs | SpringerLink
Skip to main content

SGAN: Appliance Signatures Data Generation for NILM Applications Using GANs

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 1018))

Included in the following conference series:

Abstract

The development and evolution of advanced energy system technologies is one of the most important goals for the global community in recent years. In this effort, the utilization and analysis of energy time series is of decisive importance for the understanding of energy consumption and production patterns. However, access to real data may be limited due to the sensitivity of the information and the limited amount of data already available. This has led to the use of methods to produce artificial data in order to enrich existing datasets. Generative Adversarial Networks or GANs are an approach to generative modeling using deep learning methods based on the logic of adversarial learning, and consist of two adversarial neural networks, a generator and a discriminator, which work together to produce realistic and unbiased data. The subject of the current paper is the creation of a GAN pipeline capable of producing power time series that resemble those observed in the real world, preserving the main characteristics and diversity of the observed electrical devices. The proposed method shows promising results, outperforming other state-of-the-art models in two calculated metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 20591
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 31459
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Howe, B., Stoyanovich, J., Ping, H., Herman, B., Gee, M.: Synthetic data for social good (2017). arXiv preprint arXiv:1710.08874

  2. Soltana, G., Sabetzadeh, M., Briand, L.C.: Synthetic data generation for statistical testing. In: 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 872–882. IEEE, October 2017

    Google Scholar 

  3. Quintana, D.S.: A synthetic dataset primer for the biobehavioural sciences to promote reproducibility and hypothesis generation, 11 March 2020

    Google Scholar 

  4. Rajotte, J.F., Bergen, R., Buckeridge, D.L., El Emam, K., Ng, R., Strome, E.: Synthetic data as an enabler for machine learning applications in medicine. iScience 25(11) (2022)

    Google Scholar 

  5. Ralanamahatana, C.A., Lin, J., Gunopulos, D., Keogh, E., Vlachos, M., Das, G.: Mining time series data. In: Data Mining and Knowledge Discovery Handbook, pp. 1069-1103 (2005)

    Google Scholar 

  6. Pereira, L., Quintal, F., Gonçalves, R., Nunes, N.J.: SustData: a public dataset for ICT4S electric energy research. In: ICT for Sustainability 2014 (ICT4S 2014), pp. 359–368. Atlantis Press, August 2014

    Google Scholar 

  7. Kolter, J.Z., Johnson, M.J.: REDD: a public data set for energy disaggregation research. In: Workshop on Data Mining Applications in Sustainability (SIGKDD), San Diego, CA, vol. 25, pp. 59–62. Citeseer, August 2011

    Google Scholar 

  8. Parson, O., et al.: Dataport and NILMTK: a building data set designed for non-intrusive load monitoring. In: 2015 IEEE Global Conference on Signal and Information Processing (globalSIP). IEEE (2015)

    Google Scholar 

  9. Ruano, A., Hernandez, A., Ureña, J., Ruano, M., Garcia, J.: NILM techniques for intelligent home energy management and ambient assisted living: a review. Energies 12(11), 2203 (2019). https://doi.org/10.3390/en12112203

    Article  Google Scholar 

  10. Naghibi, B., Deilami, S.: Non-intrusive load monitoring and supplementary techniques for home energy management. In: 2014 Australasian Universities Power Engineering Conference (AUPEC), pp. 1–5. IEEE, September 2014

    Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  12. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  13. Metz, L., Poole, B., Pfau, D., Sohl-Dickstein, J.: Unrolled generative adversarial networks. arXiv preprint arXiv:1611.02163 (2016)

  14. Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial networks. arXiv preprint arXiv:1701.04862 (2017)

  15. Roth, K., Lucchi, A., Nowozin, S., Hofmann, T.: Stabilizing training of generative adversarial networks through regularization. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  16. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR, July 2017

    Google Scholar 

  17. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  18. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  19. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  20. Harell, A., Jones, R., Makonin, S., Bajic, I.V.: PowerGAN: synthesizing appliance power signatures using generative adversarial networks. arXiv preprint arXiv:2007.13645 (2020)

  21. Smith, K.E., Smith, A.O.: Conditional GAN for timeseries generation. arXiv preprint arXiv:2006.16477 (2020)

  22. Kelly, J., Knottenbelt, W.: Neural NILM: deep neural networks applied to energy disaggregation. In: Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments, Seoul, Republic of Korea, 4–5 November 2015, pp. 55–64 (2015)

    Google Scholar 

  23. Gomes, E., Pereira, L.: PB-NILM: pinball guided deep non-intrusive load monitoring. IEEE Access 8, 48386–48398 (2020)

    Article  Google Scholar 

  24. Krystalakos, O., Nalmpantis, C., Vrakas, D.: Sliding window approach for online energy disaggregation using artificial neural networks. In: Proceedings of the 10th Hellenic Conference on Artificial Intelligence, pp. 1–6, July 2018

    Google Scholar 

  25. Virtsionis-Gkalinikis, N., Nalmpantis, C., Vrakas, D.: SAED: self-attentive energy disaggregation. Mach. Learn. 112, 4081–4100 (2023). https://doi.org/10.1007/s10994-021-06106-3

    Article  MathSciNet  Google Scholar 

  26. Nalmpantis, C., Virtsionis Gkalinikis, N., Vrakas, D.: Neural Fourier energy disaggregation. Sensors (Basel) 22(2), 473 (2022). https://doi.org/10.3390/s22020473

    Article  Google Scholar 

  27. Virtsionis Gkalinikis, N., Nalmpantis, C., Vrakas, D.: Variational regression for multi-target energy disaggregation. Sensors 23(4), 2051 (2023). https://doi.org/10.3390/s23042051

    Article  Google Scholar 

  28. Kaselimi, M., Doulamis, N., Voulodimos, A., Doulamis, A., Protopapadakis, E.: EnerGAN++: a generative adversarial gated recurrent network for robust energy disaggregation. IEEE Open J. Sig. Process. 2, 1–16 (2020)

    Google Scholar 

  29. Dimitriadis, I., Virtsionis Gkalinikis, N., Gkiouzelis, N., Vakali, A., Athanasiadis, C., Baslis, C.: HeartDIS: a generalizable end-to-end energy disaggregation pipeline. Energies 16(13), 5115 (2023). https://doi.org/10.3390/en16135115

    Article  Google Scholar 

  30. Kelly, J., Knottenbelt, W.: The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes. Sci. Data 2(1), 1–14 (2015)

    Article  Google Scholar 

  31. Murray, D., Stankovic, L., Stankovic, V.: An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study. Sci. Data 4(1), 1–12 (2017)

    Article  Google Scholar 

  32. Klemenjak, C., Kovatsch, C., Herold, M., Elmenreich, W.: A synthetic energy dataset for non-intrusive load monitoring in households. Sci. Data 7(1), 108 (2020)

    Article  Google Scholar 

  33. Ahmed, A.M.A., Zhang, Y., Eliassen, F.: Generative adversarial networks and transfer learning for non-intrusive load monitoring in smart grids. In: 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), pp. 1–7. IEEE (2020)

    Google Scholar 

  34. Kurach, K., Lučić, M., Zhai, X., Michalski, M., Gelly, S.: A large-scale study on regularization and normalization in GANs. In: International Conference on Machine Learning, pp. 3581–3590. PMLR, May 2019

    Google Scholar 

  35. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Gkoutroumpi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gkoutroumpi, C., Gkalinikis, N.V., Vrakas, D. (2024). SGAN: Appliance Signatures Data Generation for NILM Applications Using GANs. In: Arai, K. (eds) Intelligent Computing. SAI 2024. Lecture Notes in Networks and Systems, vol 1018. Springer, Cham. https://doi.org/10.1007/978-3-031-62269-4_23

Download citation

Publish with us

Policies and ethics