Abstract
The emergency department (ED) is an intricate facet of the healthcare system, including hospital and prehospital entities that interact closely to make quick and accurate decisions. Therefore, it is the initial point of interaction between medical professionals and individuals presenting an array of symptoms. Emergency physicians face several challenges, such as long hospital stays, diagnostic complexities, waiting times, and appropriate resource allocation dilemmas that arise from traditional medical practices. Furthermore, the COVID-19 pandemic has underscored the limitation of traditional healthcare methods and symbolic Artificial Intelligence (AI), emphasizing the imperative need for solutions rooted in contemporary AI. The integration of modern AI into the sphere of Emergency Medicine (EM) provides promising insight into the future of emergency care, but few articles highlight these advances. The main objective of this scoping review is to provide the community with the importance of the cross-approach between modern AI and EM by highlighting all the hidden advances, limitations, and progress that can be made to improve ED. We also scrutinize modern AI systems, algorithms, and their complexity, as well as the ethics associated with using this cutting-edge technology in EM.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cowling, T.E., et al.: Access to primary care and visits to emergency departments in England: a cross-sectional, population-based study. PLoS One 8(6), e66699 (2013 ). https://doi.org/10.1371/journal.pone.0066699. PMID: 23776694; PMCID: PMC3680424
Paling, S., Lambert, J., Clouting, J., González-Esquerré, J., Auterson, T.: Waiting times in emergency departments: exploring the factors associated with longer patient waits for emergency care in England using routinely collected daily data. Emerg. Med. J. 37(12), 781–786 (2020 ). https://doi.org/10.1136/emermed-2019-208849. PMID: 32933946; PMCID: PMC7691811
Haag, F., Hopf, K., Vasconcelos, P.M., Staake, T.: Augmented cross-selling through explainable AI–a case from energy retailing. arXiv preprint arXiv:2208.11404 (2022)
Shoman, M., Aboah, A., Morehead, A., Duan, Y., Daud, A., Adu-Gyamfi, Y.: A region-based deep learning approach to automated retail checkout. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3210–3215 (2022)
Hofmann, M., Neukart, F., Bäck, T.: Artificial Intelligence and Data Science in the Automotive Industry (2017)
Wen, L., et al.: On the road with GPT-4V (ision): early explorations of visual-language model on autonomous driving. arXiv preprint arXiv:2311.05332 (2023)
Kumbhar, A., Chougale, A., Lokhande, P., Navaghane, S., Burud, A., Nimbalkar, S.: DeepInspect: an AI-powered defect detection for manufacturing industries. arXiv preprint arXiv:2311.03725 (2023)
Buehler, M.J.: Generative retrieval-augmented ontologic graph and multi-agent strategies for interpretive large language model-based materials design. arXiv preprint arXiv:2310.19998 (2023)
Asha, R.B., Suresh Kumar, K.R.: Credit card fraud detection using artificial neural network. Glob. Transit. Proc. 2(1), 35–41 (2021). ISSN 2666-285X. https://doi.org/10.1016/j.gltp.2021.01.006
Khandani, A.E., Kim, A.J., Lo, A.W.: Consumer credit-risk models via machine-learning algorithms. J. Bank. Finan. 34(11), 2767–2787 (2010). ISSN 0378-4266. https://doi.org/10.1016/j.jbankfin.2010.06.001
Abdusalomov, A.B., Mukhiddinov, M., Whangbo, T.K.: Brain tumor detection based on deep learning approaches and magnetic resonance imaging. Cancers (Basel) 15(16), 4172 (2023). https://doi.org/10.3390/cancers15164172. PMID: 37627200; PMCID: PMC10453020
Talukder, MA.A., et al.: An efficient deep learning model to categorize brain tumor using reconstruction and fine-tuning. Expert Syst. Appl. 230, 120534 (2023). ISSN 0957–4174. https://doi.org/10.1016/j.eswa.2023.120534
Kalluri, H.K., Tulasi Krishna, S.: A deep learning method for prediction of cardiovascular disease using convolutional neural network. Revue d intelligence artificielle 34, 601–606 (2020). https://doi.org/10.18280/ria.340510
Wang, J., Ding, H., Bidgoli, F.A., et al.: Detecting cardiovascular disease from mammograms with deep learning. IEEE Trans. Med. Imaging 36(5), 1172–1181 (2017)
Kumar, A., Bhadauria, H.S., Singh, A.: Descriptive analysis of dental X-ray images using various practical methods: A review. PeerJ Comput. Sci. 7, e620 (2021). https://doi.org/10.7717/peerj-cs.620
Hêche, F., Barakat, O., Desmettre, T., et al.: Offline reinforcement learning in high-dimensional stochastic environments. Neural Comput. Appl. (2023). https://doi.org/10.1007/s00521-023-09029-3
Benitez, K., Malin, B.: Evaluating re-identification risks with respect to the HIPAA privacy rule. J Am. Med. Inf. Assoc. 17(2), 169–177 (2010). https://doi.org/10.1136/jamia.2009.000026. PMID: 20190059; PMCID: PMC3000773
Silva, M.: On the history of discrete event systems. Ann. Rev. Control 45, 213–222 (2018). ISSN 1367–5788. https://doi.org/10.1016/j.arcontrol.2018.03.004
Rodwin, V.G.: The health care system under French national health insurance: lessons for health reform in the United States. Am. J. Public Health 93(1), 31–37 (2003). https://doi.org/10.2105/AJPH.93.1.31
Muthukrishnan, N., Maleki, F., Ovens, K., Reinhold, C., Forghani, B., Forghani, R.: Brief history of artificial intelligence. Neuroimaging Clin. N Am. 30(4), 393–399 (2020). https://doi.org/10.1016/j.nic.2020.07.004. PMID: 33038991
Benko, A., Sik Lányi, C.: History of artificial intelligence. In: Mehdi Khosrow-Pour, D.B.A. (ed.) Encyclopedia of Information Science and Technology, 2nd edn., pp. 1759–1762. IGI Global (2009). https://doi.org/10.4018/978-1-60566-026-4.ch276
Haenlein, M., Kaplan, A.: A brief history of artificial intelligence: on the past, present, and future of artificial intelligence. Calif. Manag. Rev. 61(4), 5–14 (2019)
Alzaid, N., et al.: Revolutionizing dental care: a comprehensive review of artificial intelligence applications among various dental specialties. Cureus. 15(10), e47033 (2023). https://doi.org/10.7759/cureus.47033. PMID: 37965397; PMCID: PMC10642940
Shafaf, N., Malek, H.: Applications of machine learning approaches in emergency medicine; a review article. Arch. Acad. Emerg. Med. 7(1), 34 (2019). PMID: 31555764; PMCID: PMC6732202
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995). https://doi.org/10.1007/BF00994018
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2012)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539
Mittal, S., Hasija, Y.: Applications of deep learning in healthcare and biomedicine. In: Dash, S., Acharya, B.R., Mittal, M., Abraham, A., Kelemen, A. (eds.) Deep Learning Techniques for Biomedical and Health Informatics. SBD, vol. 68, pp. 57–77. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33966-1_4
Cunningham, P., Cord, M., Delany, S.J.: Supervised learning. In: Cord, M., Cunningham, P. (eds.) Machine Learning Techniques for Multimedia. Cognitive Technologies. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-75171-7_2
Vermeulen, A.F.: Unsupervised learning: using unlabeled data. In: Industrial Machine Learning. Apress, Berkeley (2020). https://doi.org/10.1007/978-1-4842-5316-8_6
van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109, 373–440 (2020). https://doi.org/10.1007/s10994-019-05855-6
Coronato, A., Naeem, M., De Pietro, G., Paragliola, G.: Reinforcement learning for intelligent healthcare applications: a survey. Artif. Intell. Med. 109, 101964 (2020). https://doi.org/10.1016/j.artmed.2020.101964. PMID: 34756216
Kaelbling, L.P., et al.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)
Abdiansah, A., Wardoyo, R.: Time complexity analysis of support vector machines (SVM) in LibSVM. Int. J. Comput. Appl. 128, 28–34 (2015)
Singh, J.: Computational complexity and analysis of supervised machine learning algorithms. In: Kumar, R., Pattnaik, P.K., R. S. Tavares, J.M. (eds.) Next Generation of Internet of Things. Lecture Notes in Networks and Systems, vol. 445, pp. 195–206. Springer, Singapore. https://doi.org/10.1007/978-981-19-1412-6_16
Mahesh, B.: Machine learning algorithms -a review (2019). https://doi.org/10.21275/ART20203995
Myung, I.J. The importance of complexity in model selection. J. Math. Psychol. 44(1), 190–204 (2000). https://doi.org/10.1006/jmps.1999.1283. PMID: 10733864
Panch, T., Szolovits, P., Atun, R.: Artificial intelligence, machine learning and health systems. J. Glob. Health. 8(2), 020303 (2018). https://doi.org/10.7189/jogh.08.020303. PMID: 30405904; PMCID: PMC6199467
Wang, F., Casalino, L.P., Khullar, D.: Deep learning in medicine-promise, progress, and challenges. JAMA Int. Med. 179(3), 293–294 (2019). https://doi.org/10.1001/jamainternmed.2018.7117. PMID: 30556825
Wilson, M.H., Habig, K., Wright, C., Hughes, A., Davies, G., Imray, C.H.E.: Pre-hospital emergency medicine. The Lancet 386(10012), 2526–2534 (2015). ISSN 0140-6736
Hasan, et al.: Goodacre, Pre-hospital prediction of adverse outcomes in patients with suspected COVID-19: development, application and comparison of machine learning and deep learning methods. Comput. Biol. Med. 151(Part A), 106024 (2022). ISSN 0010-4825,
Tollinton, L., Metcalf, A.M., Velupillai, S.: Enhancing predictions of patient conveyance using emergency call handler free text notes for unconscious and fainting incidents reported to the London Ambulance Service. Int. J. Med. Inf. 141, 104179 (2020 ). https://doi.org/10.1016/j.ijmedinf.2020.104179. PMID: 32663739
Kim, J.H., Kim, B., Kim, M.J., Hyun, H., Kim, H.C., Chang, H.J.: Prediction of inappropriate pre-hospital transfer of patients with suspected cardiovascular emergency diseases using machine learning: a retrospective observational study. BMC Med. Inf. Decis. Mak. 23(1), 56 (2023). https://doi.org/10.1186/s12911-023-02149-9. PMID: 37024872; PMCID: PMC10080868
Moyer, J.D., et al.: Machine learning-based prediction of emergency neurosurgery within 24 h after moderate to severe traumatic brain injury. World J. Emerg. Surg. 17(1), 42 (2022). https://doi.org/10.1186/s13017-022-00449-5. PMID: 35922831; PMCID: PMC9351267
Lachance, C.C., Ford, C.: Portable Stroke Detection Devices for Patients with Stroke Symptoms: A Review of Diagnostic Accuracy and Cost-Effectiveness [Internet]. Canadian Agency for Drugs and Technologies in Health, Ottawa (ON) (2019)
Blomberg, S.N., et al :Machine learning as a supportive tool to recognize cardiac arrest in emergency calls. Resuscitation 138, 322–329 (2019). ISSN 0300-9572. https://doi.org/10.1016/j.resuscitation.2019.01.015
Kwon, J.M., Lee, Y., Lee, Y., Lee, S., Park, H., Park, J.: Validation of deep-learning-based triage and acuity score using a large national dataset. PLoS One 13(10), e0205836 (2018). https://doi.org/10.1371/journal.pone.0205836. PMID: 30321231; PMCID: PMC6188844
Chang, H., et al.: Clinical support system for triage based on federated learning for the Korea triage and acuity scale. Heliyon 9(8), e19210 (2023). https://doi.org/10.1016/j.heliyon.2023.e19210. PMID: 37654468; PMCID: PMC10465866
Kim, D., Oh, J., Im, H., Yoon, M., Park, J., Lee, J.: Automatic classification of the Korean triage acuity scale in simulated emergency rooms using speech recognition and natural language processing: a proof of concept study. J. Korean Med. Sci. 36(27), e175 (2021). https://doi.org/10.3346/jkms.2021.36.e175. PMID: 34254471; PMCID: PMC8275459
Yao, L.H., Leung, K.C., Tsai, C.L., Huang, C.H., Fu, L.C.: A novel deep learning-based system for triage in the emergency department using electronic medical records: retrospective cohort study. J. Med. Internet Res. 23(12), e27008 (2021). https://doi.org/10.2196/27008. PMID: 34958305; PMCID: PMC8749584
Jiang, X., Hu, Z., Wang, S., Zhang, Y.: Deep learning for medical image-based cancer diagnosis. Cancers (Basel) 15(14), 3608 (2023). https://doi.org/10.3390/cancers15143608.PMID: 37509272; PMCID: PMC10377683
Amirahmadi, A., Ohlsson, M., Etminani, K.: Deep learning prediction models based on EHR trajectories: a systematic review. J. Biomed. Inf. 144, 104430 (2023). ISSN 1532–0464. https://doi.org/10.1016/j.jbi.2023.104430
Ghazal, T.M., Rehman, A.U., Saleem, M., Ahmad, M., Ahmad, S., Mehmood, F.: Intelligent model to predict early liver disease using machine learning technique. In: 2022 International Conference on Business Analytics for Technology and Security (ICBATS), Dubai, United Arab Emirates, pp. 1–5 (2022). https://doi.org/10.1109/ICBATS54253.2022.9758929
Dinesh, K.G., Arumugaraj, K., Santhosh, K.D., Mareeswari, V.: Prediction of cardiovascular disease using machine learning algorithms. In: 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), Coimbatore, India, pp. 1–7 (2018). https://doi.org/10.1109/ICCTCT.2018.8550857
Birjais, R., Mourya, A.K., Chauhan, R., et al.: Prediction and diagnosis of future diabetes risk: a machine learning approach. SN Appl. Sci. 1, 1112 (2019). https://doi.org/10.1007/s42452-019-1117-9
Mammen, P.M.: Federated learning: opportunities and challenges. arXiv preprint arXiv:2101.05428 (2021)
Liu, B., et al.: Recent advances on federated learning: a systematic survey. arXiv preprint arXiv:2301.01299 (2023)
Whang, S.E., et al.: Data collection and quality challenges in deep learning: a data-centric AI perspective. VLDB J. 32(4), 791–813 (2023)
Liu, Y., et al.: Data quantity governance for machine learning in materials science. Natl. Sci. Rev. (2023). nwad125
Dube, R.: The P versus NP Problem. arXiv e-prints: arXiv-1001 (2010)
Dong, Q., et al.: Large language model for science: a study on P vs. NP. arXiv preprint arXiv:2309.05689 (2023)
Wan, C., Shi, Z.: A proof for P=? NP problem. arXiv preprint arXiv:1005.3010 (2010)
Franzén, M.: The P versus NP brief. arXiv preprint arXiv:0709.1207 (2007)
Yang, G., Ye, Q., Xia, J.: Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: a mini-review, two showcases and beyond. Inf. Fusion 77, 29–52 (2022)
Manresa-Yee, C., Roig-Maimó, M.F., Ramis, S., Mas-Sansó, R.: Advances in XAI: explanation interfaces in healthcare. In: Lim, C.-P., Chen, Y.-W., Vaidya, A., Mahorkar, C., Jain, L.C. (eds.) Handbook of Artificial Intelligence in Healthcare. ISRL, vol. 212, pp. 357–369. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-83620-7_15
Chen, H., et al.: Multi-agent consensus seeking via large language models. arXiv preprint arXiv:2310.20151 (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Edjinedja, K., Barakat, O., Desmettre, T., Marx, T., Elfahim, O., Bredy-Maux, C. (2024). Cross Approach Between Modern Artificial Intelligence and Emergency Medicine: A Review. In: Arai, K. (eds) Intelligent Computing. SAI 2024. Lecture Notes in Networks and Systems, vol 1018. Springer, Cham. https://doi.org/10.1007/978-3-031-62269-4_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-62269-4_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-62268-7
Online ISBN: 978-3-031-62269-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)