Prediction of Extreme Wave Heights via a Fuzzy-Based Cascade Ensemble Model | SpringerLink
Skip to main content

Prediction of Extreme Wave Heights via a Fuzzy-Based Cascade Ensemble Model

  • Conference paper
  • First Online:
Bioinspired Systems for Translational Applications: From Robotics to Social Engineering (IWINAC 2024)

Abstract

This paper addresses the critical challenge of accurately forecasting extreme wave heights, a crucial aspect for offshore operations often underexplored in existing literature. Employing a fuzzy-based cascade ensemble of regression models, our approach involves successive partitioning of training data into fuzzy-soft clusters, enabling specific regression models to analyze distinct segments of the target domain. Integration of individual model predictions into a fuzzy-based ensemble, with pertinence values assigned based on previous layer predictions, enhances accuracy by prioritizing certain events. The simplicity of our approach, eliminating the need for data balancing techniques, and its efficacy in predicting extreme wave heights with remarkable results distinguish it from existing methods. Since the optimal data partitioning is specific to the problem, an optimization strategy using two evolutionary algorithms as DE and CRO is employed to determine specific parameters of the methodology, including the number of membership functions, shapes of membership functions, and learning rate. This optimization strategy further enhances its performance, making it a promising solution for wave forecasting challenges.

This research has been partially supported by the project PID2020-115454GB-C21 of the Spanish Ministry of Science and Innovation (MICINN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afzal, M.S., Kumar, L., Chugh, V., Kumar, Y., Zuhair, M.: Prediction of significant wave height using machine learning and its application to extreme wave analysis. J. Earth Syst. Sci. 132(2), 51 (2023)

    Article  Google Scholar 

  2. Booij, N., Holthuijsen, L., Ris, R.: The" swan" wave model for shallow water. In: Coastal Engineering 1996, pp. 668–676 (1996)

    Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  4. Dixit, P., Londhe, S.: Prediction of extreme wave heights using neuro wavelet technique. Appl. Ocean Res. 58, 241–252 (2016)

    Article  Google Scholar 

  5. Draper, N.R., Smith, H.: Applied regression analysis, vol. 326. John Wiley & Sons (1998)

    Google Scholar 

  6. Dysthe, K., Krogstad, H.E., Müller, P.: Oceanic rogue waves. Annu. Rev. Fluid Mech. 40, 287–310 (2008)

    Article  MathSciNet  Google Scholar 

  7. Falcao, A.F.d.O.: Wave energy utilization: a review of the technologies. Renew. Sustain. Energy Rev. 14(3), 899–918 (2010)

    Google Scholar 

  8. Fan, S., Xiao, N., Dong, S.: A novel model to predict significant wave height based on long short-term memory network. Ocean Eng. 205, 107298 (2020)

    Article  Google Scholar 

  9. Feng, Z., Hu, P., Li, S., Mo, D.: Prediction of significant wave height in offshore china based on the machine learning method. J. Marine Sci. Eng. 10(6), 836 (2022)

    Article  Google Scholar 

  10. Güner, H.A.A., Yüksel, Y., Çevik, E.Ö.: Estimation of wave parameters based on nearshore wind-wave correlations. Ocean Eng. 63, 52–62 (2013)

    Article  Google Scholar 

  11. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: Theory and applications. Neurocomputing 70, 489–501 (12 2006). https://doi.org/10.1016/j.neucom.2005.12.126

  12. Peláez-Rodríguez, C., Pérez-Aracil, J., Prieto-Godino, L., Ghimire, S., Deo, R., Salcedo-Sanz, S.: A fuzzy-based cascade ensemble model for improving extreme wind speeds prediction. J. Wind Eng. Ind. Aerodyn. 240, 105507 (2023)

    Article  Google Scholar 

  13. Pérez-Aracil, J., Camacho-Gómez, C., Lorente-Ramos, E., Marina, C.M., Cornejo-Bueno, L.M., Salcedo-Sanz, S.: New probabilistic, dynamic multi-method ensembles for optimization based on the cro-sl. Mathematics 11(7), 1666 (2023)

    Article  Google Scholar 

  14. Petrov, V., Soares, C.G., Gotovac, H.: Prediction of extreme significant wave heights using maximum entropy. Coast. Eng. 74, 1–10 (2013)

    Article  Google Scholar 

  15. Rueda, A., Camus, P., Méndez, F.J., Tomás, A., Luceño, A.: An extreme value model for maximum wave heights based on weather types. J. Geophys. Res.: Oceans 121(2), 1262–1273 (2016)

    Article  Google Scholar 

  16. Shamshirband, S., Mosavi, A., Rabczuk, T., Nabipour, N., Chau, K.w.: Prediction of significant wave height; comparison between nested grid numerical model, and machine learning models of artificial neural networks, extreme learning and support vector machines. Eng. Appl. Comput. Fluid Mech. 14(1), 805–817 (2020)

    Google Scholar 

  17. Shi, Q., Katuwal, R., Suganthan, P.N., Tanveer, M.: Random vector functional link neural network based ensemble deep learning. Pattern Recogn. 117, 107978 (2021)

    Article  Google Scholar 

  18. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  19. Ti, Z., Li, Y., Qin, S.: Numerical approach of interaction between wave and flexible bridge pier with arbitrary cross section based on boundary element method. J. Bridg. Eng. 25(11), 04020095 (2020)

    Article  Google Scholar 

  20. Viselli, A.M., Forristall, G.Z., Pearce, B.R., Dagher, H.J.: Estimation of extreme wave and wind design parameters for offshore wind turbines in the gulf of maine using a pot method. Ocean Eng. 104, 649–658 (2015)

    Article  Google Scholar 

  21. Zilong, T., Wei, D.X.: Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads. Appl. Energy 306, 117947 (2022)

    Article  Google Scholar 

  22. Zilong, T., Yubing, S., Xiaowei, D.: Spatial-temporal wave height forecast using deep learning and public reanalysis dataset. Appl. Energy 326, 120027 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Peláez-Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peláez-Rodríguez, C., Cornejo-Bueno, L., Fister, D., Pérez-Aracil, J., Salcedo-Sanz, S. (2024). Prediction of Extreme Wave Heights via a Fuzzy-Based Cascade Ensemble Model. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Bioinspired Systems for Translational Applications: From Robotics to Social Engineering. IWINAC 2024. Lecture Notes in Computer Science, vol 14675. Springer, Cham. https://doi.org/10.1007/978-3-031-61137-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61137-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61136-0

  • Online ISBN: 978-3-031-61137-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics