Abstract
This paper investigates the effects of adapting a virtual human’s persuasion strategy based on users’ personalities and prior beliefs regarding recommended behavior in the context of promoting mental health coping skills among college students. The paper uses the Theory of Planned Behavior (TPB) as the theoretical model to study how a virtual human’s persuasion strategies impact behavior change. The paper also employs Cialdini’s six persuasion strategies - Reciprocity, Scarcity, Authority, Commitment, Likability, and Consensus - to manipulate the virtual human’s dialog. The paper develops a user model that predicts the effectiveness of different persuasion strategies based on user data from a previous study. The paper then evaluates the user model in an empirical study with 292 undergraduate students, comparing three experimental conditions - a matched condition where the virtual human used a more effective persuasion strategy, a mismatched condition where the virtual human used a less effective persuasion strategy, and a control condition where the virtual human did not use any persuasion strategy. The paper finds that adapting the virtual human’s persuasion strategy can positively influence users who have low self-efficacy to perform the recommended behavior, but can negatively influence users who already have high self-efficacy. The paper also finds that persuasion strategies may not be sufficient to induce behavior change, and suggests accounting for users’ perceived barriers and benefits of the recommended behavior. The paper contributes to the Human-Computer Interaction research by providing evidence for the importance of individual differences in designing virtual human health interventions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
OSF \(|\) Persuasion Study 4. https://osf.io/dnsca/?view_only=d86959f8364443c3bbbb6f5f8cb8696f
GMM covariances - scikit-learn 1.0.2 documentation (2022). https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_covariances.html#sphx-glr-auto-examples-mixture-plot-gmm-covariances-py
Alkiş, N., Taşkaya Temizel, T.: The impact of individual differences on influence strategies. Personality Individ. Differ. 87, 147–152 (2015). https://doi.org/10.1016/j.paid.2015.07.037
Baylor, A.L., Kim, S.: Designing nonverbal communication for pedagogical agents: when less is more. Comput. Hum. Behav. 25(2), 450–457 (2009)
Bickmore, T.W., Schulman, D., Sidner, C.L.: A reusable framework for health counseling dialogue systems based on a behavioral medicine ontology. J. Biomed. Inform. 44(2), 183–197 (2011). https://doi.org/10.1016/j.jbi.2010.12.006
Bistricky, S.L., et al.: Understanding and promoting stress management practices among college students through an integrated health behavior model. Am. J. Health Educ. 49(1), 12–27 (2018). https://doi.org/10.1080/19325037.2017.1377651
Cialdini, R.B.: Influence : science and practice (2001). https://www.amazon.com/Influence-Practice-Robert-B-Cialdini/dp/0205609996
Emmons, R.A., Stern, R.: Gratitude as a psychotherapeutic intervention. J. Clin. Psychol. Session 69, 846–855 (2013). https://doi.org/10.1002/jclp.22020
Fanning, J., Mullen, S.P., Mcauley, E.: Increasing physical activity with mobile devices: a meta-analysis. J. Med. Internet Res. 14(6), e2171 (2012). https://doi.org/10.2196/jmir.2171, https://www.jmir.org/2012/6/e161
Gentile, V., Khamis, M., Milazzo, F., Sorce, S., Malizia, A., Alt, F.: Predicting mid-air gestural interaction with public displays based on audience behaviour. Int. J. Hum. Comput. Stud. 144, 102497 (2020). https://doi.org/10.1016/j.ijhcs.2020.102497, https://linkinghub.elsevier.com/retrieve/pii/S1071581920300999
Gkika, S., Lekakos, G.: The persuasive role of explanations in recommender systems. In: CEUR Workshop Proceedings, vol. 1153, pp. 59–68 (2014). https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.663.7538 &rep=rep1 &type=pdf
Goldberg, L.R., Psychology, E.A.O.P.: A broad-bandwidth, public-domain, personality inventory measuring the lower-level facets of several Five-Factor models. In: European Conference on Personality, Tilburg University (1999). https://ipip.ori.org/A broad-bandwidth inventory.pdf
Inkle: Ink: Inkle’s open source scripting language for writing interactive narrative (2021). https://github.com/inkle/ink
ipip.ori.org: IPIP Scale Scoring Instructions (2014). https://ipip.ori.org/newScoringInstructions.htm
Kaptein, M.: Personalized persuasion in ambient intelligence. J. Ambient Intell. Smart Environ. 4(3), 279–280 (2012). https://doi.org/10.3233/AIS-2012-0153
Lanza, S.T., Cooper, B.R.: Latent class analysis for developmental research. Child Dev. Perspect. 10(1), 59–64 (2016). https://doi.org/10.1111/cdep.12163
Lisetti, C., Amini, R., Yasavur, U., On, N.R.: I can help you change! an empathic virtual agent delivers behavior change health interventions. In: ACM Transactions on Management Information Systems, pp. 1–28 (2014). https://doi.org/10.1145/2544103
Lucas, G.M., Krämer, N., Peters, C., Taesch, L.S., Mell, J., Gratch, J.: Effects of perceived agency and message tone in responding to a virtual personal trainer. In: Proceedings of the 18th International Conference on Intelligent Virtual Agents, pp. 247–254. IVA 2018, ACM, New York, NY, USA (2018). https://doi.org/10.1145/3267851.3267855
Morris, M.M.: A Parent’s Guide to Mental Health for College Students \(|\) NAMI: National Alliance on Mental Illness (2018). https://www.nami.org/Blogs/NAMI-Blog/December-2018/A-Parent-s-Guide-to-Mental-Health-for-College-Students
Olafsson, S., O’Leary, T.K., Bickmore, T.W.: Motivating health behavior change with humorous virtual agents. In: Proceedings of the 20th ACM International Conference on Intelligent Virtual Agents, IVA 2020, pp. 1–8. Association for Computing Machinery, Inc, New York, NY, USA (2020). https://doi.org/10.1145/3383652.3423915
Orji, R., Mandryk, R.L., Vassileva, J.: Gender, age, and responsiveness to Cialdini’s persuasion strategies. In: MacTavish, T., Basapur, S. (eds.) PERSUASIVE 2015. LNCS, vol. 9072, pp. 147–159. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20306-5_14
Oyibo, K., Orji, R., Vassileva, J.: Investigation of the influence of personality traits on Cialdini’s persuasive strategies. In: CEUR Workshop Proceedings, vol. 1833, pp. 8–20 (2017). http://ceur-ws.org
Ozogul, G., Johnson, A.M., Atkinson, R.K., Reisslein, M.: Investigating the impact of pedagogical agent gender matching and learner choice on learning outcomes and perceptions. Comput. Educ. 67, 36–50 (2013). https://doi.org/10.1016/j.compedu.2013.02.006
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res.12(7), 2825–2830 (2011). https://scikit-learn.org/stable/, http://scikit-learn.sourceforge.net, http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html%5Cn, http://arxiv.org/abs/1201.0490
Ploder, A., Eder, A.: Semantic Differential. International Encyclopedia of the Social & Behavioral Sciences: 2nd (Edn.), pp. 563–571 (2015). https://doi.org/10.1016/B978-0-08-097086-8.03231-1
Schulman, D., Bickmore, T.: Persuading users through counseling dialogue with a conversational agent. In: Proceedings of the 4th International Conference on Persuasive Technology - Persuasive 2009, p. 1. ACM Press, New York, New York, USA (2009). https://doi.org/10.1145/1541948.1541983, http://portal.acm.org/citation.cfm?doid=1541948.1541983
Storrie, K., Ahern, K., Tuckett, A.: A systematic review: students with mental health problems-A growing problem. Int. J. Nurs. Pract. 16(1), 1–6 (2010). https://doi.org/10.1111/j.1440-172X.2009.01813.x
Strecher, V.: Psychology, I.R.H.O., Health, U. The health belief model. books.google.com (1997). https://books.google.com/books?hl=en &lr= &id=zVh30FrAuDsC &oi=fnd &pg=PA113 &dq=health+belief+model &ots=Im1MkCvIrv &sig=3PX7Av8SNdgTx3X4KhspesJA-_8
Thomas, R.J., Masthoff, J., Oren, N.: Personalising healthy eating messages to age, gender and personality: using Cialdini’s principles and framing. In: International Conference on Intelligent User Interfaces, Proceedings IUI, pp. 81–84. Association for Computing Machinery, New York, New York, USA (2017). https://doi.org/10.1145/3030024.3040986, http://dl.acm.org/citation.cfm?doid=3030024.3040986
U.S. Government Accountability Office.: Young adults with serious mental illness: Some states and federal agencies are taking steps to address their transition challenges. (2008). https://www.gao.gov/new.items/d08678.pdf
Way, T.W., Sahiner, B., Hadjiiski, L.M., Chan, H.P.: Effect of finite sample size on feature selection and classification: a simulation study. Med. Phys. 37(2), 907–920 (2010)
Zalake, M., Gomes De Siqueira, A., Vaddiparti, K., Antonenko, P., Lok, B.: Towards understanding how virtual human’s verbal persuasion strategies influence user intentions to perform health behavior. In: Proceedings of the 21th ACM International Conference on Intelligent Virtual Agents (2021). https://doi.org/10.1145/3472306
Zalake, M., Siqueira, A.G.D., Vaddiparti, K., Lok, B.: The effects of virtual human’s verbal persuasion strategies on user intention and behavior. Int. J. Hum.-Comput. Stud. 156, 102708 (2021). https://doi.org/10.1016/J.IJHCS.2021.102708
Zalake, M., Vaddiparti, K., Antonenko, P., Lok, B.: Towards understanding how virtual human’s verbal persuasion strategies influence user intentions to perform health behavior. In: Proceedings of the 21st ACM International Conference on Intelligent Virtual Agents, IVA 2021, pp. 216–223 (2021). https://doi.org/10.1145/3472306.3478345
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zalake, M., Gomes De Siqueira, A., Vaddiparti, K., Antonenko, P., Lok, B. (2024). Evaluating the Effect of Adapting Virtual Humans Based on Individual Differences in Users. In: Duffy, V.G. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. HCII 2024. Lecture Notes in Computer Science, vol 14709. Springer, Cham. https://doi.org/10.1007/978-3-031-61060-8_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-61060-8_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61059-2
Online ISBN: 978-3-031-61060-8
eBook Packages: Computer ScienceComputer Science (R0)