Evaluating the Effect of Adapting Virtual Humans Based on Individual Differences in Users | SpringerLink
Skip to main content

Evaluating the Effect of Adapting Virtual Humans Based on Individual Differences in Users

  • Conference paper
  • First Online:
Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management (HCII 2024)

Abstract

This paper investigates the effects of adapting a virtual human’s persuasion strategy based on users’ personalities and prior beliefs regarding recommended behavior in the context of promoting mental health coping skills among college students. The paper uses the Theory of Planned Behavior (TPB) as the theoretical model to study how a virtual human’s persuasion strategies impact behavior change. The paper also employs Cialdini’s six persuasion strategies - Reciprocity, Scarcity, Authority, Commitment, Likability, and Consensus - to manipulate the virtual human’s dialog. The paper develops a user model that predicts the effectiveness of different persuasion strategies based on user data from a previous study. The paper then evaluates the user model in an empirical study with 292 undergraduate students, comparing three experimental conditions - a matched condition where the virtual human used a more effective persuasion strategy, a mismatched condition where the virtual human used a less effective persuasion strategy, and a control condition where the virtual human did not use any persuasion strategy. The paper finds that adapting the virtual human’s persuasion strategy can positively influence users who have low self-efficacy to perform the recommended behavior, but can negatively influence users who already have high self-efficacy. The paper also finds that persuasion strategies may not be sufficient to induce behavior change, and suggests accounting for users’ perceived barriers and benefits of the recommended behavior. The paper contributes to the Human-Computer Interaction research by providing evidence for the importance of individual differences in designing virtual human health interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. OSF \(|\) Persuasion Study 4. https://osf.io/dnsca/?view_only=d86959f8364443c3bbbb6f5f8cb8696f

  2. GMM covariances - scikit-learn 1.0.2 documentation (2022). https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_covariances.html#sphx-glr-auto-examples-mixture-plot-gmm-covariances-py

  3. Alkiş, N., Taşkaya Temizel, T.: The impact of individual differences on influence strategies. Personality Individ. Differ. 87, 147–152 (2015). https://doi.org/10.1016/j.paid.2015.07.037

  4. Baylor, A.L., Kim, S.: Designing nonverbal communication for pedagogical agents: when less is more. Comput. Hum. Behav. 25(2), 450–457 (2009)

    Google Scholar 

  5. Bickmore, T.W., Schulman, D., Sidner, C.L.: A reusable framework for health counseling dialogue systems based on a behavioral medicine ontology. J. Biomed. Inform. 44(2), 183–197 (2011). https://doi.org/10.1016/j.jbi.2010.12.006

  6. Bistricky, S.L., et al.: Understanding and promoting stress management practices among college students through an integrated health behavior model. Am. J. Health Educ. 49(1), 12–27 (2018). https://doi.org/10.1080/19325037.2017.1377651

  7. Cialdini, R.B.: Influence : science and practice (2001). https://www.amazon.com/Influence-Practice-Robert-B-Cialdini/dp/0205609996

  8. Emmons, R.A., Stern, R.: Gratitude as a psychotherapeutic intervention. J. Clin. Psychol. Session 69, 846–855 (2013). https://doi.org/10.1002/jclp.22020

    Article  Google Scholar 

  9. Fanning, J., Mullen, S.P., Mcauley, E.: Increasing physical activity with mobile devices: a meta-analysis. J. Med. Internet Res. 14(6), e2171 (2012). https://doi.org/10.2196/jmir.2171, https://www.jmir.org/2012/6/e161

  10. Gentile, V., Khamis, M., Milazzo, F., Sorce, S., Malizia, A., Alt, F.: Predicting mid-air gestural interaction with public displays based on audience behaviour. Int. J. Hum. Comput. Stud. 144, 102497 (2020). https://doi.org/10.1016/j.ijhcs.2020.102497, https://linkinghub.elsevier.com/retrieve/pii/S1071581920300999

  11. Gkika, S., Lekakos, G.: The persuasive role of explanations in recommender systems. In: CEUR Workshop Proceedings, vol. 1153, pp. 59–68 (2014). https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.663.7538 &rep=rep1 &type=pdf

  12. Goldberg, L.R., Psychology, E.A.O.P.: A broad-bandwidth, public-domain, personality inventory measuring the lower-level facets of several Five-Factor models. In: European Conference on Personality, Tilburg University (1999). https://ipip.ori.org/A broad-bandwidth inventory.pdf

  13. Inkle: Ink: Inkle’s open source scripting language for writing interactive narrative (2021). https://github.com/inkle/ink

  14. ipip.ori.org: IPIP Scale Scoring Instructions (2014). https://ipip.ori.org/newScoringInstructions.htm

  15. Kaptein, M.: Personalized persuasion in ambient intelligence. J. Ambient Intell. Smart Environ. 4(3), 279–280 (2012). https://doi.org/10.3233/AIS-2012-0153

    Article  Google Scholar 

  16. Lanza, S.T., Cooper, B.R.: Latent class analysis for developmental research. Child Dev. Perspect. 10(1), 59–64 (2016). https://doi.org/10.1111/cdep.12163

  17. Lisetti, C., Amini, R., Yasavur, U., On, N.R.: I can help you change! an empathic virtual agent delivers behavior change health interventions. In: ACM Transactions on Management Information Systems, pp. 1–28 (2014). https://doi.org/10.1145/2544103

  18. Lucas, G.M., Krämer, N., Peters, C., Taesch, L.S., Mell, J., Gratch, J.: Effects of perceived agency and message tone in responding to a virtual personal trainer. In: Proceedings of the 18th International Conference on Intelligent Virtual Agents, pp. 247–254. IVA 2018, ACM, New York, NY, USA (2018). https://doi.org/10.1145/3267851.3267855

  19. Morris, M.M.: A Parent’s Guide to Mental Health for College Students \(|\) NAMI: National Alliance on Mental Illness (2018). https://www.nami.org/Blogs/NAMI-Blog/December-2018/A-Parent-s-Guide-to-Mental-Health-for-College-Students

  20. Olafsson, S., O’Leary, T.K., Bickmore, T.W.: Motivating health behavior change with humorous virtual agents. In: Proceedings of the 20th ACM International Conference on Intelligent Virtual Agents, IVA 2020, pp. 1–8. Association for Computing Machinery, Inc, New York, NY, USA (2020). https://doi.org/10.1145/3383652.3423915

  21. Orji, R., Mandryk, R.L., Vassileva, J.: Gender, age, and responsiveness to Cialdini’s persuasion strategies. In: MacTavish, T., Basapur, S. (eds.) PERSUASIVE 2015. LNCS, vol. 9072, pp. 147–159. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20306-5_14

    Chapter  Google Scholar 

  22. Oyibo, K., Orji, R., Vassileva, J.: Investigation of the influence of personality traits on Cialdini’s persuasive strategies. In: CEUR Workshop Proceedings, vol. 1833, pp. 8–20 (2017). http://ceur-ws.org

  23. Ozogul, G., Johnson, A.M., Atkinson, R.K., Reisslein, M.: Investigating the impact of pedagogical agent gender matching and learner choice on learning outcomes and perceptions. Comput. Educ. 67, 36–50 (2013). https://doi.org/10.1016/j.compedu.2013.02.006

  24. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res.12(7), 2825–2830 (2011). https://scikit-learn.org/stable/, http://scikit-learn.sourceforge.net, http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html%5Cn, http://arxiv.org/abs/1201.0490

  25. Ploder, A., Eder, A.: Semantic Differential. International Encyclopedia of the Social & Behavioral Sciences: 2nd (Edn.), pp. 563–571 (2015). https://doi.org/10.1016/B978-0-08-097086-8.03231-1

  26. Schulman, D., Bickmore, T.: Persuading users through counseling dialogue with a conversational agent. In: Proceedings of the 4th International Conference on Persuasive Technology - Persuasive 2009, p. 1. ACM Press, New York, New York, USA (2009). https://doi.org/10.1145/1541948.1541983, http://portal.acm.org/citation.cfm?doid=1541948.1541983

  27. Storrie, K., Ahern, K., Tuckett, A.: A systematic review: students with mental health problems-A growing problem. Int. J. Nurs. Pract. 16(1), 1–6 (2010). https://doi.org/10.1111/j.1440-172X.2009.01813.x

  28. Strecher, V.: Psychology, I.R.H.O., Health, U. The health belief model. books.google.com (1997). https://books.google.com/books?hl=en &lr= &id=zVh30FrAuDsC &oi=fnd &pg=PA113 &dq=health+belief+model &ots=Im1MkCvIrv &sig=3PX7Av8SNdgTx3X4KhspesJA-_8

  29. Thomas, R.J., Masthoff, J., Oren, N.: Personalising healthy eating messages to age, gender and personality: using Cialdini’s principles and framing. In: International Conference on Intelligent User Interfaces, Proceedings IUI, pp. 81–84. Association for Computing Machinery, New York, New York, USA (2017). https://doi.org/10.1145/3030024.3040986, http://dl.acm.org/citation.cfm?doid=3030024.3040986

  30. U.S. Government Accountability Office.: Young adults with serious mental illness: Some states and federal agencies are taking steps to address their transition challenges. (2008). https://www.gao.gov/new.items/d08678.pdf

  31. Way, T.W., Sahiner, B., Hadjiiski, L.M., Chan, H.P.: Effect of finite sample size on feature selection and classification: a simulation study. Med. Phys. 37(2), 907–920 (2010)

    Article  Google Scholar 

  32. Zalake, M., Gomes De Siqueira, A., Vaddiparti, K., Antonenko, P., Lok, B.: Towards understanding how virtual human’s verbal persuasion strategies influence user intentions to perform health behavior. In: Proceedings of the 21th ACM International Conference on Intelligent Virtual Agents (2021). https://doi.org/10.1145/3472306

  33. Zalake, M., Siqueira, A.G.D., Vaddiparti, K., Lok, B.: The effects of virtual human’s verbal persuasion strategies on user intention and behavior. Int. J. Hum.-Comput. Stud. 156, 102708 (2021). https://doi.org/10.1016/J.IJHCS.2021.102708

  34. Zalake, M., Vaddiparti, K., Antonenko, P., Lok, B.: Towards understanding how virtual human’s verbal persuasion strategies influence user intentions to perform health behavior. In: Proceedings of the 21st ACM International Conference on Intelligent Virtual Agents, IVA 2021, pp. 216–223 (2021). https://doi.org/10.1145/3472306.3478345

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan Zalake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zalake, M., Gomes De Siqueira, A., Vaddiparti, K., Antonenko, P., Lok, B. (2024). Evaluating the Effect of Adapting Virtual Humans Based on Individual Differences in Users. In: Duffy, V.G. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. HCII 2024. Lecture Notes in Computer Science, vol 14709. Springer, Cham. https://doi.org/10.1007/978-3-031-61060-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61060-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61059-2

  • Online ISBN: 978-3-031-61060-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics