Abstract
Flight simulator training is essential for aircraft pilots to learn and maintain the ability to fly specific aircraft for both commercial and defence purposes. With recent advances in extended reality, the implementation thereof has made its way into proposed simulated flight training protocols. In conjunction to the advent of extended reality, research into the use of haptics or the sense of touch within VEs has accelerated. A few challenges persist within simulation training including training effectiveness, level of immersiveness, and the manageable exposure duration per training run. Extended reality experiences face similar challenges. The field of haptics might provide solutions for these challenges. Thus, this paper reviews the state-of-the-art of haptics, current challenges, and possible future applications within aviation simulation and training. It is found that research with respect to the integration of haptics in aviation training and simulation is not yet mature. A lot of potential exists for research into the improvement of training effectiveness, performance and immersiveness within extended reality based simulation for flight training and maintenance engineering purposes via haptics. Based thereupon future work is suggested to look into 1) decreasing simulator sickness by simulating and synchronizing expected real life perturbations within flight simulation via haptic wearables 2) simulating a sense of physical flight within a static simulator set-up by leveraging self-motion 3) enabling physical interaction of aircraft parts digital twins for improving extended reality based maintenance engineering performance by utilizing haptic wearables.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abate, A.F., Guida, M., Leoncini, P., Nappi, M., Ricciardi, S.: A haptic-based approach to virtual training for aerospace industry. J. Vis. Lang. Comput. 20(5), 318–325 (2009). https://doi.org/10.1016/j.jvlc.2009.07.003
Abbink, D.A., Mulder, M., Boer, E.R.: Haptic shared control: smoothly shifting control authority? Cogn. Tech. Work 14(1), 19–28 (2012). https://doi.org/10.1007/s10111-011-0192-5
Alaimo, S.M.C., Pollini, L., Bresciani, J.P., Bülthoff, H.H.: A comparison of direct and indirect haptic aiding for remotely piloted vehicles. In: 19th International Symposium in Robot and Human Interactive Communication, pp. 506–512. IEEE, September 2010. https://doi.org/10.1109/ROMAN.2010.5598647
Allerton, D.J.: The impact of flight simulation in aerospace. Aeronaut. J. 114(1162), 747–756 (2010). https://doi.org/10.1017/S0001924000004231
Arenella, A., D’Intino, G., Bülthoff, H.H., Pollini, L.: An adaptive haptic aid system based on desired pilot dynamics. In: 2019 American Control Conference (ACC), pp. 4866–4871. IEEE, July 2019. https://doi.org/10.23919/ACC.2019.8814610
Asamura, N., Yokoyama, N., Shinoda, H.: Selectively stimulating skin receptors for tactile display. IEEE Comput. Graph. Appl. 18(6), 32–37 (1998). https://doi.org/10.1109/38.734977
Basdogan, C., Giraud, F., Levesque, V., Choi, S.: A review of surface haptics: enabling tactile effects on touch surfaces. IEEE Trans. Haptics 13(3), 450–470 (2020). https://doi.org/10.1109/TOH.2020.2990712
Beeftink, D.G., Borst, C., Van Baelen, D., van Paassen, M.M., Mulder, M.: Haptic support for aircraft approaches with a perspective flight-path display. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3016–3021. IEEE, October 2018. https://doi.org/10.1109/SMC.2018.00512
Boessenkool, H., Abbink, D.A., Heemskerk, C.J.M., van der Helm, F.C.T.: Haptic shared control improves tele-operated task performance towards performance in direct control. In: 2011 IEEE World Haptics Conference, pp. 433–438. IEEE, June 2011. https://doi.org/10.1109/WHC.2011.5945525
Castelvecchi, D.: Low-cost headsets boost virtual reality’s lab appeal. Nature 533, 153–154 (2016). https://doi.org/10.1038/533153a
Chandra Sekaran, S., Yap, H.J., Liew, K.E., Kamaruzzaman, H., Tan, C.H., Rajab, R.S.: Haptic-based virtual reality system to enhance actual aerospace composite panel drilling training. In: Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, pp. 113–128. Woodhead Publishing, Buckingham, England, UK, January 2019. https://doi.org/10.1016/B978-0-08-102291-7.00007-1
Chen, X., Lelevé, A., McDaniel, T., Rossa, C.: Editorial: haptic training simulation, volume II. Front. Rob. AI 9, 965113 (2022). https://doi.org/10.3389/frobt.2022.965113
Costes, A., Lécuyer, A.: Inducing self-motion sensations with haptic feedback: state-of-the-art and perspectives on “haptic motion”. IEEE Trans. Haptics 16(2), 171–181, May 2023. https://doi.org/10.1109/TOH.2023.3279267
Cox, C.M.J., Hicks, B., Gopsill, J., Snider, C.: From haptic interaction to design insight: an empirical comparison of commercial hand-tracking technology. Proc. Des. Soc. 3, 1965–1974 (2023). https://doi.org/10.1017/pds.2023.197
Culbertson, H., Schorr, S.B., Okamura, A.M.: Haptics: the present and future of artificial touch sensation. Annu. Rev. Control Rob. Auton. Syst. 1(1), 385–409 (2018). https://doi.org/10.1146/annurev-control-060117-105043
D’Intino, G., Olivari, M., Bülthoff, H.H., Pollini, L.: Haptic assistance for helicopter control based on pilot intent estimation. J. Aerosp. Inf. Syst. (2020). https://doi.org/10.2514/1.I010773
D’Intino, G., Olivari, M., Geluardi, S., Fabbroni, D., Pollini, L.: A pilot intent estimator for haptic support systems in helicopter maneuvering tasks. ResearchGate (2018). https://doi.org/10.2514/6.2018-0116
Duncker, K.: Induced motion. In: A Source Book of Gestalt Pscyhology, pp. 161–172 (1938). https://doi.org/10.1037/11496-012
Dużmańska, N., Strojny, P., Strojny, A.: Can simulator sickness be avoided? A review on temporal aspects of simulator sickness. Front. Psychol. 9, 410742 (2018). https://doi.org/10.3389/fpsyg.2018.02132
Errandonea, I., Beltrán, S., Arrizabalaga, S.: Digital twin for maintenance: a literature review. Comput. Ind. 123, 103316 (2020). https://doi.org/10.1016/j.compind.2020.103316
Gibbs, J.K., Gillies, M., Pan, X.: A comparison of the effects of haptic and visual feedback on presence in virtual reality. Int. J. Hum Comput Stud. 157, 102717 (2022). https://doi.org/10.1016/j.ijhcs.2021.102717
Girdler, A., Georgiou, O.: Mid-air haptics in aviation – creating the sensation of touch where there is nothing but thin air. arXiv, January 2020. https://doi.org/10.48550/arXiv.2001.01445
Giri, G.S., Maddahi, Y., Zareinia, K.: An application-based review of haptics technology. Robotics 10(1), 29 (2021). https://doi.org/10.3390/robotics10010029
Grajewski, D., Górski, F., Hamrol, A., Zawadzki, P.: Immersive and haptic educational simulations of assembly workplace conditions. Procedia Comput. Sci. 75, 359–368 (2015). https://doi.org/10.1016/j.procs.2015.12.258
Guo, Z., Zhou, D., Zhou, Q., Zhang, X., Hao, A.: Applications of virtual reality in maintenance during the industrial product lifecycle: A systematic review. J. Manuf. Syst. 56(3), 525–538 (2020). https://doi.org/10.1016/j.jmsy.2020.07.007
Guthridge, R., Clinton-Lisell, V.: Evaluating the efficacy of virtual reality (VR) training devices for pilot training. Purdue e-Pubs 12(2), 1 (2023). https://doi.org/10.7771/2159-6670.1286
Heemskerk, C.J.M., de Baar, M.R., Boessenkool, H., Graafland, B., Visser, M.: Extending virtual reality simulation of ITER maintenance operations with dynamic effects. Fusion Eng. Des. 86(9), 2082–2086 (2011). https://doi.org/10.1016/j.fusengdes.2011.04.066
Hooshiar, A., Najarian, S., Dargahi, J.: Haptic telerobotic cardiovascular intervention: a review of approaches, methods, and future perspectives. IEEE Rev. Biomed. Eng. 13, 32–50 (2020). https://doi.org/10.1109/RBME.2019.2907458
Hoshi, T., Takahashi, M., Iwamoto, T., Shinoda, H.: Noncontact tactile display based on radiation pressure of airborne ultrasound. IEEE Trans. Haptics 3(3), 155–165 (2010). https://doi.org/10.1109/TOH.2010.4
Iwamoto, T., Tatezono, M., Shinoda, H.: Non-contact method for producing tactile sensation using airborne ultrasound. In: Ferre, M. (ed.) EuroHaptics 2008. LNCS, vol. 5024, pp. 504–513. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69057-3_64
Jiang, W., Zheng, J.J., Zhou, H.J., Zhang, B.K.: A new constraint-based virtual environment for haptic assembly training. Adv. Eng. Softw. 98, 58–68 (2016). https://doi.org/10.1016/j.advengsoft.2016.03.004
Jiang, Y., Yin, S., Li, K., Luo, H., Kaynak, O.: Industrial applications of digital twins. Phil. Trans. R. Soc. A 379(2207), 20200360 (2021)
Jodai, T., Terao, M., Jones, L.A., Ho, H.N.: Determination of the thermal-tactile simultaneity window for multisensory cutaneous displays. In: Proceedings of IEEE. World Haptics Conference 2023, July 2023
Jung, S., Li, R., McKee, R., Whitton, M.C., Lindeman, R.W.: Floor-vibration VR: mitigating cybersickness using whole-body tactile stimuli in highly realistic vehicle driving experiences. IEEE Trans. Visual Comput. Graph. 27(5), 2669–2680 (2021). https://doi.org/10.1109/TVCG.2021.3067773
Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993). https://doi.org/10.1207/s15327108ijap0303_3
Kennedy, R.S., Stanney, K.M., Dunlap, W.P.: Duration and exposure to virtual environments: sickness curves during and across sessions. Teleoper. Virtual Environ. 9(5), 463–472 (2000). https://doi.org/10.1162/105474600566952
Khenak, N., Bach, C., Drouot, S., Buratto, F.: Evaluation of virtual reality training: effectiveness on pilots’ learning, April 2023. https://hal.science/hal-04046414. Accessed 23 Aug 2023
Kodak, B.L., Vardar, Y.: FeelPen: a haptic stylus displaying multimodal texture feels on touchscreens. IEEE/ASME Trans. Mechatron. 1–11 (2023). https://doi.org/10.1109/TMECH.2023.3264787
Kolasinski, E.M., Va, A.R.I.F.T.B., Alexandria, S.S.: Simulator Sickness in Virtual Environments. DTIC, May 1995
Kondo, R., Wada, T., Sonoda, K.: Use of haptic shared control in highly automated driving systems. IFAC-PapersOnLine 52(19), 43–48 (2019). https://doi.org/10.1016/j.ifacol.2019.12.084
Lee, A.T.: Flight Simulation: Virtual Environments in Aviation. Taylor & Francis, Andover, England, UK (2016). https://doi.org/10.4324/9781315255217
Lelevé, A., McDaniel, T., Rossa, C.: Haptic training simulation. Front. Virtual Real. 1, 543795 (2020). https://doi.org/10.3389/frvir.2020.00003
Lindeman, R.W., Page, R., Yanagida, Y., Sibert, J.L.: Towards full-body haptic feedback: the design and deployment of a spatialized vibrotactile feedback system. In: VRST ’04: Proceedings of the ACM symposium on Virtual reality software and technology, pp. 146–149. Association for Computing Machinery, New York, NY, USA, November 2004. https://doi.org/10.1145/1077534.1077562
Mackenzie, C.F., Harris, T.E., Shipper, A.G., Elster, E., Bowyer, M.W.: Virtual reality and haptic interfaces for civilian and military open trauma surgery training: a systematic review. Injury 53(11), 3575–3585 (2022). https://doi.org/10.1016/j.injury.2022.08.003
Malik, H.A., Rasool, S., Maqsood, A., Riaz, R.: Effect of haptic feedback on pilot/operator performance during flight simulation. Appl. Sci. 10(11), 3877 (2020). https://doi.org/10.3390/app10113877
Mayet, M., Le Carrou, J.L., Gueorguiev, D.: Perception of friction-related cues induced by temperature variation on a surface display. In: Proceedings of IEEE World Haptics Conference 2023, July 2023
McHugh, N., Jung, S., Hoermann, S., Lindeman, R.W.: investigating a physical dial as a measurement tool for cybersickness in virtual reality. In: VRST ’19: Proceedings of the 25th ACM Symposium on Virtual Reality Software and Technology, pp. 1–5. Association for Computing Machinery, New York, NY, USA, November 2019. https://doi.org/10.1145/3359996.3364259
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021). https://doi.org/10.1145/3503250
Monnai, Y., Hasegawa, K., Fujiwara, M., Yoshino, K., Inoue, S., Shinoda, H.: HaptoMime: mid-air haptic interaction with a floating virtual screen. In: UIST ’14: Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, pp. 663–667. Association for Computing Machinery, New York, NY, USA, October 2014. https://doi.org/10.1145/2642918.2647407
Myers III, P.L., Starr, A.W., Mullins, K.: Flight simulator fidelity, training transfer, and the role of instructors in optimizing learning. Scholarly Commons 5(1), 6 (2018). https://doi.org/10.15394/ijaaa.2018.1203
Nakade, T., Fuchs, R., Bleuler, H., Schiffmann, J.: Haptics based multi-level collaborative steering control for automated driving. Commun. Eng. 2(2), 1–13 (2023). https://doi.org/10.1038/s44172-022-00051-2
Olivari, M., Nieuwenhuizen, F.M., Bülthoff, H.H., Pollini, L.: Pilot adaptation to different classes of haptic aids in tracking tasks. J. Guidance Control Dyn. (2014). https://doi.org/10.2514/1.G000534
Orozco, M., Silva, J., El Saddik, A., Petriu, E.: The role of haptics in games. Haptics Render. Appl. 217–234 (2012)
Page, D., Lindeman, R.W., Lukosch, S.: Identifying strategies to mitigate cybersickness in virtual reality induced by flying with an interactive travel interface. Multimodal Technol. Interact. 7(5), 47 (2023). https://doi.org/10.3390/mti7050047
Park, J., Han, J., Kyung, K.U.: Providing localized surface haptic on a thin- transparent vibrating panel. In: Proceedings of IEEE World Haptics Conference 2023 (2023)
Patel, R.V., Atashzar, S.F., Tavakoli, M.: Haptic feedback and force-based teleoperation in surgical robotics. Proc. IEEE 110(7), 1012–1027 (2022). https://doi.org/10.1109/JPROC.2022.3180052
Peng, Y.H., et al.: WalkingVibe: reducing virtual reality sickness and improving realism while walking in VR using unobtrusive head-mounted vibrotactile feedback. In: CHI ’20: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–12. Association for Computing Machinery, New York, NY, USA, April 2020. https://doi.org/10.1145/3313831.3376847
Perret, J., Vercruysse, P.: Advanced force-feedback solutions and their application to space programs. In: Proceedings of the 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation, November 2006
Petermeijer, S.M., Abbink, D.A., Mulder, M., de Winter, J.C.F.: The effect of haptic support systems on driver performance: a literature survey. IEEE Trans. Haptics 8(4), 467–479 (2015). https://doi.org/10.1109/TOH.2015.2437871
Poyade, M.: Motor skill training using virtual reality and haptic interaction: a case study in industrial maintenance. Ph.D. dissertation, Universidad de Málaga (2013). https://investigacion.ujaen.es/documentos/6397d5e8b0ebee6c8799ca9f
Ramsamy, P., Haffegee, A., Jamieson, R., Alexandrov, V.: Using haptics to improve immersion in virtual environments. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3992, pp. 603–609. Springer, Heidelberg (2006). https://doi.org/10.1007/11758525_81
Rastogi, N., Srivastava, A.K.: Control system design for tokamak remote maintenance operations using assisted virtual reality and haptic feedback. Fusion Eng. Des. 139, 47–54 (2019)
Rauschnabel, P.A., Felix, R., Hinsch, C., Shahab, H., Alt, F.: What is XR? Towards a framework for augmented and virtual reality. Comput. Hum. Behav. 133, 107289 (2022). https://doi.org/10.1016/j.chb.2022.107289
Reardon, G., Goetz, D., Linnander, M., Visell, Y.: Rendering dynamic source motion in surface haptics via wave focusing. IEEE Trans. Haptics 1–7 (2023). https://doi.org/10.1109/TOH.2023.3274485
Reason, J.T., Brand, J.J.: Motion Sickness. Academic Press, London, England, UK (1975)
Riccio, G.E., Stoffregen, T.A.: What is XR? Towards a framework for augmented and virtual reality. Ecol. Psychol. 3(3), 195–240 (1991). https://doi.org/10.1207/s15326969eco0303_2
Rognon, C., Koehler, M., Duriez, C., Floreano, D., Okamura, A.M.: Soft haptic device to render the sensation of flying like a drone. IEEE Rob. Autom. Lett. 4(3), 2524–2531 (2019). https://doi.org/10.1109/LRA.2019.2907432
Rognon, C., Mintchev, S., Dell’Agnola, F., Cherpillod, A., Atienza, D., Floreano, D.: FlyJacket: an upper body soft exoskeleton for immersive drone control. IEEE Rob. Autom. Lett. 3(3), 2362–2369 (2018). https://doi.org/10.1109/LRA.2018.2810955
Rognon, C., Ramachandran, V., Wu, A.R., Ijspeert, A.J., Floreano, D.: Haptic feedback perception and learning with cable-driven guidance in exosuit teleoperation of a simulated drone. IEEE Trans. Haptics 12(3), 375–385 (2019). https://doi.org/10.1109/TOH.2019.2925612
de Rooij, G., Van Baelen, D., Borst, C., van Paassen, M.M., Mulder, M.: Supplementing haptic feedback in flight envelope protection through visual display indications. J. Aerosp. Inf. Syst. (2023). https://doi.org/10.2514/1.I011191
Sadia, B., Emgin, S.E., Sezgin, T.M., Basdogan, C.: Data-driven vibrotactile rendering of digital buttons on touchscreens. Int. J. Hum Comput Stud. 135, 102363 (2020). https://doi.org/10.1016/j.ijhcs.2019.09.005
Sawada, Y., et al.: Effects of synchronised engine sound and vibration presentation on visually induced motion sickness. Sci. Rep. 10(7553), 1–10 (2020). https://doi.org/10.1038/s41598-020-64302-y
See, A.R., Choco, J.A.G., Chandramohan, K.: Touch, texture and haptic feedback: a review on how we feel the world around us. Appl. Sci. 12(9), 4686 (2022). https://doi.org/10.3390/app12094686
Shinoda, H., Nakajima, T., Ueno, K., Koshida, N.: Thermally induced ultrasonic emission from porous silicon. Nature 400, 853–855 (1999). https://doi.org/10.1038/23664
Shiroma, N., Sato, N., Chiu, Y.H., Matsuno, F.: Study on effective camera images for mobile robot teleoperation (2004). https://doi.org/10.1109/ROMAN.2004.1374738
Silva, A.J., Ramirez, O.A.D., Vega, V.P., Oliver, J.P.O.: PHANToM OMNI haptic device: kinematic and manipulability. In: 2009 Electronics, Robotics and Automotive Mechanics Conference (CERMA), pp. 193–198. IEEE (2009). https://doi.org/10.1109/CERMA.2009.55
da Silveira, A.C., Rodrigues, E.C., Saleme, E.B., Covaci, A., Ghinea, G., Santos, C.A.S.: Thermal and wind devices for multisensory human-computer interaction: an overview. Multimed. Tools Appl. pp. 1–28 (2023). https://doi.org/10.1007/s11042-023-14672-y
Simonsson, C., Franzén, M.: A configurable interface between X-Plane and bHaptics TactSuit X40. Bachelor’s thesis, Linköping University, Department of Computer and Information Science (2022). http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1673654&dswid=-5586
Srinivasan, M.A., Basdogan, C.: Haptics in virtual environments: taxonomy, research status, and challenges. Comput. Graph. 21(4), 393–404 (1997). https://doi.org/10.1016/S0097-8493(97)00030-7
Sulema, Y.: Mulsemedia vs. multimedia: state of the art and future trends. In: 2016 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 23–25. IEEE (2016). https://doi.org/10.1109/IWSSIP.2016.7502696
Tanaka, Y., Shen, A., Kong, A., Lopes, P.: Full-hand electro-tactile feedback without obstructing palmar side of hand. In: CHI ’23: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3544548.3581382
Teng, S.Y., Li, P., Nith, R., Fonseca, J., Lopes, P.: Touch &Fold: a foldable haptic actuator for rendering touch in mixed reality. In: CHI ’21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1–14. Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3411764.3445099
Van Baelen, D., Ellerbroek, J., van Paassen, M.M.R., Mulder, M.: Design of a haptic feedback system for flight envelope protection. J. Guidance Control Dyn. (2020). https://doi.org/10.2514/1.G004596
Van Baelen, D., van Paassen, M.M.R., Ellerbroek, J., Abbink, D.A., Mulder, M.: Flying by feeling: communicating flight envelope protection through haptic feedback. Int. J. Hum.-Comput. Interact. 37(7), 655–665 (2021). https://doi.org/10.1080/10447318.2021.1890489
de Vries, J.: Redesigning a haptic glove for new features and improved assembly. Master’s thesis, Delft University of Technology (2023). https://repository.tudelft.nl/islandora/object/uuid%3Ad0bf1147-f300-4412-9aa1-2fccc2240079
Weech, S., Moon, J., Troje, N.F.: Influence of bone-conducted vibration on simulator sickness in virtual reality. PLoS ONE 13(3) (2018). https://doi.org/10.1371/journal.pone.0194137
van Wegen, M., et al.: An overview of wearable haptic technologies and their performance in virtual object exploration. Sensors 23(3), 1563 (2023). https://doi.org/10.3390/s23031563
de Winter, J.C.F., Dodou, D., Mulder, M.: Training effectiveness of whole body flight simulator motion: a comprehensive meta-analysis. Int. J. Aviat. Psychol. 22(2), 164–183 (2012). https://doi.org/10.1080/10508414.2012.663247
Wolf, D., Rietzler, M., Hnatek, L., Rukzio, E.: Face/on: multi-modal haptic feedback for head-mounted displays in virtual reality. IEEE Trans. Visual. Comput. Graph. PP(99), 1 (2019). https://doi.org/10.1109/TVCG.2019.2932215
Xia, P.: Haptics for product design and manufacturing simulation. IEEE Trans. Haptics 9(3), 358–375 (2016). https://doi.org/10.1109/TOH.2016.2554551
Yoshida, K.T., et al.: Cognitive and physical activities impair perception of smartphone vibrations. IEEE Trans. Haptics 16(4), 672–679 (2023). https://doi.org/10.1109/TOH.2023.3279201
Zhao, Y., Lv, C., Yang, L.: Chapter eleven - intelligent haptic interface design for human–machine interaction in automated vehicles. In: Human-Machine Interaction for Automated Vehicles, pp. 217–240. Academic Press, Cambridge, MA, USA (2023). https://doi.org/10.1016/B978-0-443-18997-5.00002-1
Ziat, M., Wagner, S., Frissen, I.: Haptic feedback to compensate for the absence of horizon cues during landing. In: Bello, F., Kajimoto, H., Visell, Y. (eds.) EuroHaptics 2016. LNCS, vol. 9775, pp. 47–54. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42324-1_5
Zwaan, H.M., Petermeijer, S.M., Abbink, D.A.: Haptic shared steering control with an adaptive level of authority based on time-to-line crossing. IFAC-PapersOnLine 52(19), 49–54 (2019). https://doi.org/10.1016/j.ifacol.2019.12.085, 14th IFAC Symposium on Analysis, Design, and Evaluation of Human Machine Systems HMS 2019
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure Statement
This paper has been conducted and funded entirely by the Royal Netherlands Aerospace Centre (NLR). The author is not aware of any third-party affiliations with respect to funding or potential interests that might affect the objectivity of this paper. Permission has been granted by the copyright holders of the images as used within this paper.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
de Lange, R.D. (2024). A Literature Review and Proposal Towards the Further Integration of Haptics in Aviation. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality. HCII 2024. Lecture Notes in Computer Science, vol 14707. Springer, Cham. https://doi.org/10.1007/978-3-031-61044-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-61044-8_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61043-1
Online ISBN: 978-3-031-61044-8
eBook Packages: Computer ScienceComputer Science (R0)