A Literature Review and Proposal Towards the Further Integration of Haptics in Aviation | SpringerLink
Skip to main content

A Literature Review and Proposal Towards the Further Integration of Haptics in Aviation

  • Conference paper
  • First Online:
Virtual, Augmented and Mixed Reality (HCII 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14707))

Included in the following conference series:

  • 473 Accesses

Abstract

Flight simulator training is essential for aircraft pilots to learn and maintain the ability to fly specific aircraft for both commercial and defence purposes. With recent advances in extended reality, the implementation thereof has made its way into proposed simulated flight training protocols. In conjunction to the advent of extended reality, research into the use of haptics or the sense of touch within VEs has accelerated. A few challenges persist within simulation training including training effectiveness, level of immersiveness, and the manageable exposure duration per training run. Extended reality experiences face similar challenges. The field of haptics might provide solutions for these challenges. Thus, this paper reviews the state-of-the-art of haptics, current challenges, and possible future applications within aviation simulation and training. It is found that research with respect to the integration of haptics in aviation training and simulation is not yet mature. A lot of potential exists for research into the improvement of training effectiveness, performance and immersiveness within extended reality based simulation for flight training and maintenance engineering purposes via haptics. Based thereupon future work is suggested to look into 1) decreasing simulator sickness by simulating and synchronizing expected real life perturbations within flight simulation via haptic wearables 2) simulating a sense of physical flight within a static simulator set-up by leveraging self-motion 3) enabling physical interaction of aircraft parts digital twins for improving extended reality based maintenance engineering performance by utilizing haptic wearables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abate, A.F., Guida, M., Leoncini, P., Nappi, M., Ricciardi, S.: A haptic-based approach to virtual training for aerospace industry. J. Vis. Lang. Comput. 20(5), 318–325 (2009). https://doi.org/10.1016/j.jvlc.2009.07.003

    Article  Google Scholar 

  2. Abbink, D.A., Mulder, M., Boer, E.R.: Haptic shared control: smoothly shifting control authority? Cogn. Tech. Work 14(1), 19–28 (2012). https://doi.org/10.1007/s10111-011-0192-5

    Article  Google Scholar 

  3. Alaimo, S.M.C., Pollini, L., Bresciani, J.P., Bülthoff, H.H.: A comparison of direct and indirect haptic aiding for remotely piloted vehicles. In: 19th International Symposium in Robot and Human Interactive Communication, pp. 506–512. IEEE, September 2010. https://doi.org/10.1109/ROMAN.2010.5598647

  4. Allerton, D.J.: The impact of flight simulation in aerospace. Aeronaut. J. 114(1162), 747–756 (2010). https://doi.org/10.1017/S0001924000004231

    Article  Google Scholar 

  5. Arenella, A., D’Intino, G., Bülthoff, H.H., Pollini, L.: An adaptive haptic aid system based on desired pilot dynamics. In: 2019 American Control Conference (ACC), pp. 4866–4871. IEEE, July 2019. https://doi.org/10.23919/ACC.2019.8814610

  6. Asamura, N., Yokoyama, N., Shinoda, H.: Selectively stimulating skin receptors for tactile display. IEEE Comput. Graph. Appl. 18(6), 32–37 (1998). https://doi.org/10.1109/38.734977

    Article  Google Scholar 

  7. Basdogan, C., Giraud, F., Levesque, V., Choi, S.: A review of surface haptics: enabling tactile effects on touch surfaces. IEEE Trans. Haptics 13(3), 450–470 (2020). https://doi.org/10.1109/TOH.2020.2990712

    Article  Google Scholar 

  8. Beeftink, D.G., Borst, C., Van Baelen, D., van Paassen, M.M., Mulder, M.: Haptic support for aircraft approaches with a perspective flight-path display. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3016–3021. IEEE, October 2018. https://doi.org/10.1109/SMC.2018.00512

  9. Boessenkool, H., Abbink, D.A., Heemskerk, C.J.M., van der Helm, F.C.T.: Haptic shared control improves tele-operated task performance towards performance in direct control. In: 2011 IEEE World Haptics Conference, pp. 433–438. IEEE, June 2011. https://doi.org/10.1109/WHC.2011.5945525

  10. Castelvecchi, D.: Low-cost headsets boost virtual reality’s lab appeal. Nature 533, 153–154 (2016). https://doi.org/10.1038/533153a

    Article  Google Scholar 

  11. Chandra Sekaran, S., Yap, H.J., Liew, K.E., Kamaruzzaman, H., Tan, C.H., Rajab, R.S.: Haptic-based virtual reality system to enhance actual aerospace composite panel drilling training. In: Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, pp. 113–128. Woodhead Publishing, Buckingham, England, UK, January 2019. https://doi.org/10.1016/B978-0-08-102291-7.00007-1

  12. Chen, X., Lelevé, A., McDaniel, T., Rossa, C.: Editorial: haptic training simulation, volume II. Front. Rob. AI 9, 965113 (2022). https://doi.org/10.3389/frobt.2022.965113

    Article  Google Scholar 

  13. Costes, A., Lécuyer, A.: Inducing self-motion sensations with haptic feedback: state-of-the-art and perspectives on “haptic motion”. IEEE Trans. Haptics 16(2), 171–181, May 2023. https://doi.org/10.1109/TOH.2023.3279267

  14. Cox, C.M.J., Hicks, B., Gopsill, J., Snider, C.: From haptic interaction to design insight: an empirical comparison of commercial hand-tracking technology. Proc. Des. Soc. 3, 1965–1974 (2023). https://doi.org/10.1017/pds.2023.197

    Article  Google Scholar 

  15. Culbertson, H., Schorr, S.B., Okamura, A.M.: Haptics: the present and future of artificial touch sensation. Annu. Rev. Control Rob. Auton. Syst. 1(1), 385–409 (2018). https://doi.org/10.1146/annurev-control-060117-105043

    Article  Google Scholar 

  16. D’Intino, G., Olivari, M., Bülthoff, H.H., Pollini, L.: Haptic assistance for helicopter control based on pilot intent estimation. J. Aerosp. Inf. Syst. (2020). https://doi.org/10.2514/1.I010773

    Article  Google Scholar 

  17. D’Intino, G., Olivari, M., Geluardi, S., Fabbroni, D., Pollini, L.: A pilot intent estimator for haptic support systems in helicopter maneuvering tasks. ResearchGate (2018). https://doi.org/10.2514/6.2018-0116

    Article  Google Scholar 

  18. Duncker, K.: Induced motion. In: A Source Book of Gestalt Pscyhology, pp. 161–172 (1938). https://doi.org/10.1037/11496-012

  19. Dużmańska, N., Strojny, P., Strojny, A.: Can simulator sickness be avoided? A review on temporal aspects of simulator sickness. Front. Psychol. 9, 410742 (2018). https://doi.org/10.3389/fpsyg.2018.02132

    Article  Google Scholar 

  20. Errandonea, I., Beltrán, S., Arrizabalaga, S.: Digital twin for maintenance: a literature review. Comput. Ind. 123, 103316 (2020). https://doi.org/10.1016/j.compind.2020.103316

    Article  Google Scholar 

  21. Gibbs, J.K., Gillies, M., Pan, X.: A comparison of the effects of haptic and visual feedback on presence in virtual reality. Int. J. Hum Comput Stud. 157, 102717 (2022). https://doi.org/10.1016/j.ijhcs.2021.102717

    Article  Google Scholar 

  22. Girdler, A., Georgiou, O.: Mid-air haptics in aviation – creating the sensation of touch where there is nothing but thin air. arXiv, January 2020. https://doi.org/10.48550/arXiv.2001.01445

  23. Giri, G.S., Maddahi, Y., Zareinia, K.: An application-based review of haptics technology. Robotics 10(1), 29 (2021). https://doi.org/10.3390/robotics10010029

    Article  Google Scholar 

  24. Grajewski, D., Górski, F., Hamrol, A., Zawadzki, P.: Immersive and haptic educational simulations of assembly workplace conditions. Procedia Comput. Sci. 75, 359–368 (2015). https://doi.org/10.1016/j.procs.2015.12.258

    Article  Google Scholar 

  25. Guo, Z., Zhou, D., Zhou, Q., Zhang, X., Hao, A.: Applications of virtual reality in maintenance during the industrial product lifecycle: A systematic review. J. Manuf. Syst. 56(3), 525–538 (2020). https://doi.org/10.1016/j.jmsy.2020.07.007

    Article  Google Scholar 

  26. Guthridge, R., Clinton-Lisell, V.: Evaluating the efficacy of virtual reality (VR) training devices for pilot training. Purdue e-Pubs 12(2), 1 (2023). https://doi.org/10.7771/2159-6670.1286

    Article  Google Scholar 

  27. Heemskerk, C.J.M., de Baar, M.R., Boessenkool, H., Graafland, B., Visser, M.: Extending virtual reality simulation of ITER maintenance operations with dynamic effects. Fusion Eng. Des. 86(9), 2082–2086 (2011). https://doi.org/10.1016/j.fusengdes.2011.04.066

    Article  Google Scholar 

  28. Hooshiar, A., Najarian, S., Dargahi, J.: Haptic telerobotic cardiovascular intervention: a review of approaches, methods, and future perspectives. IEEE Rev. Biomed. Eng. 13, 32–50 (2020). https://doi.org/10.1109/RBME.2019.2907458

    Article  Google Scholar 

  29. Hoshi, T., Takahashi, M., Iwamoto, T., Shinoda, H.: Noncontact tactile display based on radiation pressure of airborne ultrasound. IEEE Trans. Haptics 3(3), 155–165 (2010). https://doi.org/10.1109/TOH.2010.4

    Article  Google Scholar 

  30. Iwamoto, T., Tatezono, M., Shinoda, H.: Non-contact method for producing tactile sensation using airborne ultrasound. In: Ferre, M. (ed.) EuroHaptics 2008. LNCS, vol. 5024, pp. 504–513. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69057-3_64

    Chapter  Google Scholar 

  31. Jiang, W., Zheng, J.J., Zhou, H.J., Zhang, B.K.: A new constraint-based virtual environment for haptic assembly training. Adv. Eng. Softw. 98, 58–68 (2016). https://doi.org/10.1016/j.advengsoft.2016.03.004

  32. Jiang, Y., Yin, S., Li, K., Luo, H., Kaynak, O.: Industrial applications of digital twins. Phil. Trans. R. Soc. A 379(2207), 20200360 (2021)

    Article  Google Scholar 

  33. Jodai, T., Terao, M., Jones, L.A., Ho, H.N.: Determination of the thermal-tactile simultaneity window for multisensory cutaneous displays. In: Proceedings of IEEE. World Haptics Conference 2023, July 2023

    Google Scholar 

  34. Jung, S., Li, R., McKee, R., Whitton, M.C., Lindeman, R.W.: Floor-vibration VR: mitigating cybersickness using whole-body tactile stimuli in highly realistic vehicle driving experiences. IEEE Trans. Visual Comput. Graph. 27(5), 2669–2680 (2021). https://doi.org/10.1109/TVCG.2021.3067773

    Article  Google Scholar 

  35. Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993). https://doi.org/10.1207/s15327108ijap0303_3

    Article  Google Scholar 

  36. Kennedy, R.S., Stanney, K.M., Dunlap, W.P.: Duration and exposure to virtual environments: sickness curves during and across sessions. Teleoper. Virtual Environ. 9(5), 463–472 (2000). https://doi.org/10.1162/105474600566952

  37. Khenak, N., Bach, C., Drouot, S., Buratto, F.: Evaluation of virtual reality training: effectiveness on pilots’ learning, April 2023. https://hal.science/hal-04046414. Accessed 23 Aug 2023

  38. Kodak, B.L., Vardar, Y.: FeelPen: a haptic stylus displaying multimodal texture feels on touchscreens. IEEE/ASME Trans. Mechatron. 1–11 (2023). https://doi.org/10.1109/TMECH.2023.3264787

  39. Kolasinski, E.M., Va, A.R.I.F.T.B., Alexandria, S.S.: Simulator Sickness in Virtual Environments. DTIC, May 1995

    Google Scholar 

  40. Kondo, R., Wada, T., Sonoda, K.: Use of haptic shared control in highly automated driving systems. IFAC-PapersOnLine 52(19), 43–48 (2019). https://doi.org/10.1016/j.ifacol.2019.12.084

    Article  Google Scholar 

  41. Lee, A.T.: Flight Simulation: Virtual Environments in Aviation. Taylor & Francis, Andover, England, UK (2016). https://doi.org/10.4324/9781315255217

  42. Lelevé, A., McDaniel, T., Rossa, C.: Haptic training simulation. Front. Virtual Real. 1, 543795 (2020). https://doi.org/10.3389/frvir.2020.00003

  43. Lindeman, R.W., Page, R., Yanagida, Y., Sibert, J.L.: Towards full-body haptic feedback: the design and deployment of a spatialized vibrotactile feedback system. In: VRST ’04: Proceedings of the ACM symposium on Virtual reality software and technology, pp. 146–149. Association for Computing Machinery, New York, NY, USA, November 2004. https://doi.org/10.1145/1077534.1077562

  44. Mackenzie, C.F., Harris, T.E., Shipper, A.G., Elster, E., Bowyer, M.W.: Virtual reality and haptic interfaces for civilian and military open trauma surgery training: a systematic review. Injury 53(11), 3575–3585 (2022). https://doi.org/10.1016/j.injury.2022.08.003

    Article  Google Scholar 

  45. Malik, H.A., Rasool, S., Maqsood, A., Riaz, R.: Effect of haptic feedback on pilot/operator performance during flight simulation. Appl. Sci. 10(11), 3877 (2020). https://doi.org/10.3390/app10113877

    Article  Google Scholar 

  46. Mayet, M., Le Carrou, J.L., Gueorguiev, D.: Perception of friction-related cues induced by temperature variation on a surface display. In: Proceedings of IEEE World Haptics Conference 2023, July 2023

    Google Scholar 

  47. McHugh, N., Jung, S., Hoermann, S., Lindeman, R.W.: investigating a physical dial as a measurement tool for cybersickness in virtual reality. In: VRST ’19: Proceedings of the 25th ACM Symposium on Virtual Reality Software and Technology, pp. 1–5. Association for Computing Machinery, New York, NY, USA, November 2019. https://doi.org/10.1145/3359996.3364259

  48. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021). https://doi.org/10.1145/3503250

    Article  Google Scholar 

  49. Monnai, Y., Hasegawa, K., Fujiwara, M., Yoshino, K., Inoue, S., Shinoda, H.: HaptoMime: mid-air haptic interaction with a floating virtual screen. In: UIST ’14: Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, pp. 663–667. Association for Computing Machinery, New York, NY, USA, October 2014. https://doi.org/10.1145/2642918.2647407

  50. Myers III, P.L., Starr, A.W., Mullins, K.: Flight simulator fidelity, training transfer, and the role of instructors in optimizing learning. Scholarly Commons 5(1), 6 (2018). https://doi.org/10.15394/ijaaa.2018.1203

  51. Nakade, T., Fuchs, R., Bleuler, H., Schiffmann, J.: Haptics based multi-level collaborative steering control for automated driving. Commun. Eng. 2(2), 1–13 (2023). https://doi.org/10.1038/s44172-022-00051-2

    Article  Google Scholar 

  52. Olivari, M., Nieuwenhuizen, F.M., Bülthoff, H.H., Pollini, L.: Pilot adaptation to different classes of haptic aids in tracking tasks. J. Guidance Control Dyn. (2014). https://doi.org/10.2514/1.G000534

  53. Orozco, M., Silva, J., El Saddik, A., Petriu, E.: The role of haptics in games. Haptics Render. Appl. 217–234 (2012)

    Google Scholar 

  54. Page, D., Lindeman, R.W., Lukosch, S.: Identifying strategies to mitigate cybersickness in virtual reality induced by flying with an interactive travel interface. Multimodal Technol. Interact. 7(5), 47 (2023). https://doi.org/10.3390/mti7050047

    Article  Google Scholar 

  55. Park, J., Han, J., Kyung, K.U.: Providing localized surface haptic on a thin- transparent vibrating panel. In: Proceedings of IEEE World Haptics Conference 2023 (2023)

    Google Scholar 

  56. Patel, R.V., Atashzar, S.F., Tavakoli, M.: Haptic feedback and force-based teleoperation in surgical robotics. Proc. IEEE 110(7), 1012–1027 (2022). https://doi.org/10.1109/JPROC.2022.3180052

  57. Peng, Y.H., et al.: WalkingVibe: reducing virtual reality sickness and improving realism while walking in VR using unobtrusive head-mounted vibrotactile feedback. In: CHI ’20: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–12. Association for Computing Machinery, New York, NY, USA, April 2020. https://doi.org/10.1145/3313831.3376847

  58. Perret, J., Vercruysse, P.: Advanced force-feedback solutions and their application to space programs. In: Proceedings of the 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation, November 2006

    Google Scholar 

  59. Petermeijer, S.M., Abbink, D.A., Mulder, M., de Winter, J.C.F.: The effect of haptic support systems on driver performance: a literature survey. IEEE Trans. Haptics 8(4), 467–479 (2015). https://doi.org/10.1109/TOH.2015.2437871

    Article  Google Scholar 

  60. Poyade, M.: Motor skill training using virtual reality and haptic interaction: a case study in industrial maintenance. Ph.D. dissertation, Universidad de Málaga (2013). https://investigacion.ujaen.es/documentos/6397d5e8b0ebee6c8799ca9f

  61. Ramsamy, P., Haffegee, A., Jamieson, R., Alexandrov, V.: Using haptics to improve immersion in virtual environments. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3992, pp. 603–609. Springer, Heidelberg (2006). https://doi.org/10.1007/11758525_81

    Chapter  Google Scholar 

  62. Rastogi, N., Srivastava, A.K.: Control system design for tokamak remote maintenance operations using assisted virtual reality and haptic feedback. Fusion Eng. Des. 139, 47–54 (2019)

    Article  Google Scholar 

  63. Rauschnabel, P.A., Felix, R., Hinsch, C., Shahab, H., Alt, F.: What is XR? Towards a framework for augmented and virtual reality. Comput. Hum. Behav. 133, 107289 (2022). https://doi.org/10.1016/j.chb.2022.107289

    Article  Google Scholar 

  64. Reardon, G., Goetz, D., Linnander, M., Visell, Y.: Rendering dynamic source motion in surface haptics via wave focusing. IEEE Trans. Haptics 1–7 (2023). https://doi.org/10.1109/TOH.2023.3274485

  65. Reason, J.T., Brand, J.J.: Motion Sickness. Academic Press, London, England, UK (1975)

    Google Scholar 

  66. Riccio, G.E., Stoffregen, T.A.: What is XR? Towards a framework for augmented and virtual reality. Ecol. Psychol. 3(3), 195–240 (1991). https://doi.org/10.1207/s15326969eco0303_2

    Article  Google Scholar 

  67. Rognon, C., Koehler, M., Duriez, C., Floreano, D., Okamura, A.M.: Soft haptic device to render the sensation of flying like a drone. IEEE Rob. Autom. Lett. 4(3), 2524–2531 (2019). https://doi.org/10.1109/LRA.2019.2907432

    Article  Google Scholar 

  68. Rognon, C., Mintchev, S., Dell’Agnola, F., Cherpillod, A., Atienza, D., Floreano, D.: FlyJacket: an upper body soft exoskeleton for immersive drone control. IEEE Rob. Autom. Lett. 3(3), 2362–2369 (2018). https://doi.org/10.1109/LRA.2018.2810955

    Article  Google Scholar 

  69. Rognon, C., Ramachandran, V., Wu, A.R., Ijspeert, A.J., Floreano, D.: Haptic feedback perception and learning with cable-driven guidance in exosuit teleoperation of a simulated drone. IEEE Trans. Haptics 12(3), 375–385 (2019). https://doi.org/10.1109/TOH.2019.2925612

    Article  Google Scholar 

  70. de Rooij, G., Van Baelen, D., Borst, C., van Paassen, M.M., Mulder, M.: Supplementing haptic feedback in flight envelope protection through visual display indications. J. Aerosp. Inf. Syst. (2023). https://doi.org/10.2514/1.I011191

    Article  Google Scholar 

  71. Sadia, B., Emgin, S.E., Sezgin, T.M., Basdogan, C.: Data-driven vibrotactile rendering of digital buttons on touchscreens. Int. J. Hum Comput Stud. 135, 102363 (2020). https://doi.org/10.1016/j.ijhcs.2019.09.005

    Article  Google Scholar 

  72. Sawada, Y., et al.: Effects of synchronised engine sound and vibration presentation on visually induced motion sickness. Sci. Rep. 10(7553), 1–10 (2020). https://doi.org/10.1038/s41598-020-64302-y

    Article  Google Scholar 

  73. See, A.R., Choco, J.A.G., Chandramohan, K.: Touch, texture and haptic feedback: a review on how we feel the world around us. Appl. Sci. 12(9), 4686 (2022). https://doi.org/10.3390/app12094686

    Article  Google Scholar 

  74. Shinoda, H., Nakajima, T., Ueno, K., Koshida, N.: Thermally induced ultrasonic emission from porous silicon. Nature 400, 853–855 (1999). https://doi.org/10.1038/23664

    Article  Google Scholar 

  75. Shiroma, N., Sato, N., Chiu, Y.H., Matsuno, F.: Study on effective camera images for mobile robot teleoperation (2004). https://doi.org/10.1109/ROMAN.2004.1374738

  76. Silva, A.J., Ramirez, O.A.D., Vega, V.P., Oliver, J.P.O.: PHANToM OMNI haptic device: kinematic and manipulability. In: 2009 Electronics, Robotics and Automotive Mechanics Conference (CERMA), pp. 193–198. IEEE (2009). https://doi.org/10.1109/CERMA.2009.55

  77. da Silveira, A.C., Rodrigues, E.C., Saleme, E.B., Covaci, A., Ghinea, G., Santos, C.A.S.: Thermal and wind devices for multisensory human-computer interaction: an overview. Multimed. Tools Appl. pp. 1–28 (2023). https://doi.org/10.1007/s11042-023-14672-y

  78. Simonsson, C., Franzén, M.: A configurable interface between X-Plane and bHaptics TactSuit X40. Bachelor’s thesis, Linköping University, Department of Computer and Information Science (2022). http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1673654&dswid=-5586

  79. Srinivasan, M.A., Basdogan, C.: Haptics in virtual environments: taxonomy, research status, and challenges. Comput. Graph. 21(4), 393–404 (1997). https://doi.org/10.1016/S0097-8493(97)00030-7

    Article  Google Scholar 

  80. Sulema, Y.: Mulsemedia vs. multimedia: state of the art and future trends. In: 2016 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 23–25. IEEE (2016). https://doi.org/10.1109/IWSSIP.2016.7502696

  81. Tanaka, Y., Shen, A., Kong, A., Lopes, P.: Full-hand electro-tactile feedback without obstructing palmar side of hand. In: CHI ’23: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3544548.3581382

  82. Teng, S.Y., Li, P., Nith, R., Fonseca, J., Lopes, P.: Touch &Fold: a foldable haptic actuator for rendering touch in mixed reality. In: CHI ’21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1–14. Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3411764.3445099

  83. Van Baelen, D., Ellerbroek, J., van Paassen, M.M.R., Mulder, M.: Design of a haptic feedback system for flight envelope protection. J. Guidance Control Dyn. (2020). https://doi.org/10.2514/1.G004596

  84. Van Baelen, D., van Paassen, M.M.R., Ellerbroek, J., Abbink, D.A., Mulder, M.: Flying by feeling: communicating flight envelope protection through haptic feedback. Int. J. Hum.-Comput. Interact. 37(7), 655–665 (2021). https://doi.org/10.1080/10447318.2021.1890489

    Article  Google Scholar 

  85. de Vries, J.: Redesigning a haptic glove for new features and improved assembly. Master’s thesis, Delft University of Technology (2023). https://repository.tudelft.nl/islandora/object/uuid%3Ad0bf1147-f300-4412-9aa1-2fccc2240079

  86. Weech, S., Moon, J., Troje, N.F.: Influence of bone-conducted vibration on simulator sickness in virtual reality. PLoS ONE 13(3) (2018). https://doi.org/10.1371/journal.pone.0194137

  87. van Wegen, M., et al.: An overview of wearable haptic technologies and their performance in virtual object exploration. Sensors 23(3), 1563 (2023). https://doi.org/10.3390/s23031563

    Article  Google Scholar 

  88. de Winter, J.C.F., Dodou, D., Mulder, M.: Training effectiveness of whole body flight simulator motion: a comprehensive meta-analysis. Int. J. Aviat. Psychol. 22(2), 164–183 (2012). https://doi.org/10.1080/10508414.2012.663247

    Article  Google Scholar 

  89. Wolf, D., Rietzler, M., Hnatek, L., Rukzio, E.: Face/on: multi-modal haptic feedback for head-mounted displays in virtual reality. IEEE Trans. Visual. Comput. Graph. PP(99), 1 (2019). https://doi.org/10.1109/TVCG.2019.2932215

  90. Xia, P.: Haptics for product design and manufacturing simulation. IEEE Trans. Haptics 9(3), 358–375 (2016). https://doi.org/10.1109/TOH.2016.2554551

    Article  Google Scholar 

  91. Yoshida, K.T., et al.: Cognitive and physical activities impair perception of smartphone vibrations. IEEE Trans. Haptics 16(4), 672–679 (2023). https://doi.org/10.1109/TOH.2023.3279201

    Article  Google Scholar 

  92. Zhao, Y., Lv, C., Yang, L.: Chapter eleven - intelligent haptic interface design for human–machine interaction in automated vehicles. In: Human-Machine Interaction for Automated Vehicles, pp. 217–240. Academic Press, Cambridge, MA, USA (2023). https://doi.org/10.1016/B978-0-443-18997-5.00002-1

  93. Ziat, M., Wagner, S., Frissen, I.: Haptic feedback to compensate for the absence of horizon cues during landing. In: Bello, F., Kajimoto, H., Visell, Y. (eds.) EuroHaptics 2016. LNCS, vol. 9775, pp. 47–54. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42324-1_5

    Chapter  Google Scholar 

  94. Zwaan, H.M., Petermeijer, S.M., Abbink, D.A.: Haptic shared steering control with an adaptive level of authority based on time-to-line crossing. IFAC-PapersOnLine 52(19), 49–54 (2019). https://doi.org/10.1016/j.ifacol.2019.12.085, 14th IFAC Symposium on Analysis, Design, and Evaluation of Human Machine Systems HMS 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. de Lange .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure Statement

This paper has been conducted and funded entirely by the Royal Netherlands Aerospace Centre (NLR). The author is not aware of any third-party affiliations with respect to funding or potential interests that might affect the objectivity of this paper. Permission has been granted by the copyright holders of the images as used within this paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Lange, R.D. (2024). A Literature Review and Proposal Towards the Further Integration of Haptics in Aviation. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality. HCII 2024. Lecture Notes in Computer Science, vol 14707. Springer, Cham. https://doi.org/10.1007/978-3-031-61044-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61044-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61043-1

  • Online ISBN: 978-3-031-61044-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics