Abstract
Maximum satisfiability (MaxSAT) constitutes today a successful approach to solving various real-world optimization problems through propositional encodings. Building on this success, approaches have recently been proposed for finding Pareto-optimal solutions to multi-objective MaxSAT (MO-MaxSAT) instances, i.e., propositional encodings under multiple objective functions. In this work, we propose core boosting as a reformulation/preprocessing technique for improving the runtime performance of MO-MaxSAT solvers. Core boosting in the multi-objective setting allows for shrinking the ranges of the multiple objectives at hand, which can be particularly beneficial for MO-MaxSAT relying on search that requires enforcing increasingly tighter objective bounds through propositional encodings. We show that core boosting is effective in improving the runtime performance of SAT-based MO-MaxSAT solvers typically with little overhead.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In practice, the algorithms considered in this work often employ an implication relationship—\(\tau (\langle O \le B \rangle ) = 1\) if \(\tau \) satisfies \(O\le B\)—rather than the mentioned equivalence. We assume equivalences for simplicity without loss of generality.
- 2.
Exploring similar ideas from the perspective of so-called lower bound sets [20] constitutes interesting future work beyond the scope of this paper.
References
Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based optimization in clasp. In: Dovier, A., Costa, V.S. (eds.) Technical Communications of the 28th International Conference on Logic Programming, ICLP 2012, 4–8 September 2012, Budapest, Hungary. LIPIcs, vol. 17, pp. 211–221. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2012). https://doi.org/10.4230/LIPICS.ICLP.2012.211
Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial MaxSAT through satisfiability testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–440. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_39
Ansótegui, C., Didier, F., Gabàs, J.: Exploiting the structure of unsatisfiable cores in MaxSAT. In: Yang, Q., Wooldridge, M.J. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 283–289. AAAI Press (2015). http://ijcai.org/Abstract/15/046
Ansótegui, C., Gabàs, J.: WPM3: an (in)complete algorithm for weighted partial MaxSAT. Artif. Intell. 250, 37–57 (2017). https://doi.org/10.1016/J.ARTINT.2017.05.003
Bacchus, F., Järvisalo, M., Martins, R.: Maximum satisfiability. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability—Second Edition, Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 929–991. IOS Press (2021). https://doi.org/10.3233/FAIA201008
Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of Boolean cardinality constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45193-8_8
Belov, A., Morgado, A., Marques-Silva, J.: SAT-based preprocessing for MaxSAT. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 96–111. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_7
Berg, J., Demirović, E., Stuckey, P.J.: Core-boosted linear search for incomplete MaxSAT. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS, vol. 11494, pp. 39–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19212-9_3
Berg, J., Järvisalo, M.: Weight-aware core extraction in SAT-based MaxSAT solving. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 652–670. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_42
Berg, J., Saikko, P., Järvisalo, M.: Subsumed label elimination for maximum satisfiability. In: Kaminka, G.A., et al. (eds.) ECAI 2016—22nd European Conference on Artificial Intelligence, 29 August–2 September 2016, The Hague, The Netherlands—Including Prestigious Applications of Artificial Intelligence (PAIS 2016). Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 630–638. IOS Press (2016). https://doi.org/10.3233/978-1-61499-672-9-630
Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. J. Satisf. Boolean Model. Comput. 7(2–3), 59–64 (2010). https://doi.org/10.3233/SAT190075
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability—Second Edition. Frontiers in Artificial Intelligence and Applications, vol. 336. IOS Press (2021). https://doi.org/10.3233/FAIA336
Biere, A., Järvisalo, M., Kiesl, B.: Preprocessing in SAT solving. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability—Second Edition. Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 391–435. IOS Press (2021). https://doi.org/10.3233/FAIA200992
Cabral, M., Janota, M., Manquinho, V.M.: SAT-based leximax optimisation algorithms. In: Meel, K.S., Strichman, O. (eds.) 25th International Conference on Theory and Applications of Satisfiability Testing, SAT 2022, 2–5 August 2022, Haifa, Israel. LIPIcs, vol. 236, pp. 29:1–29:19. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPICS.SAT.2022.29
Cortes, J., Lynce, I., Manquinho, V.M.: New core-guided and hitting set algorithms for multi-objective combinatorial optimization. In: Sankaranarayanan, S., Sharygina, N. (eds.) TACAS 2023, Part II. LNCS, vol. 13994, pp. 55–73. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30820-8_7
Devriendt, J., Gocht, S., Demirovic, E., Nordström, J., Stuckey, P.J.: Cutting to the core of pseudo-Boolean optimization: combining core-guided search with cutting planes reasoning. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, 2–9 February 2021, pp. 3750–3758. AAAI Press (2021). https://doi.org/10.1609/AAAI.V35I5.16492
Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electron. Notes Theor. Comput. Sci. 89(4), 543–560 (2003). https://doi.org/10.1016/S1571-0661(05)82542-3
Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. J. Satisf. Boolean Model. Comput. 2(1–4), 1–26 (2006). https://doi.org/10.3233/SAT190014
Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Cham (2005). https://doi.org/10.1007/3-540-27659-9
Ehrgott, M., Gandibleux, X.: Bound sets for biobjective combinatorial optimization problems. Comput. Oper. Res. 34(9), 2674–2694 (2007). https://doi.org/10.1016/J.COR.2005.10.003
Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_25
Gange, G., Berg, J., Demirović, E., Stuckey, P.J.: Core-guided and core-boosted search for CP. In: Hebrard, E., Musliu, N. (eds.) CPAIOR 2020. LNCS, vol. 12296, pp. 205–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58942-4_14
Guerreiro, A.P., et al.: Exact and approximate determination of the Pareto front using minimal correction subsets. Comput. Oper. Res. 153, 106153 (2023). https://doi.org/10.1016/J.COR.2023.106153
Heras, F., Larrosa, J., de Givry, S., Schiex, T.: 2006 and 2007 Max-SAT Evaluations: Contributed instances. J. Satisf. Boolean Model. Comput. 4(2–4), 239–250 (2008). https://doi.org/10.3233/SAT190046
Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: an efficient MaxSAT solver. J. Satisf. Boolean Model. Comput. 11(1), 53–64 (2019). https://doi.org/10.3233/SAT190116
Ihalainen, H., Berg, J., Järvisalo, M.: Refined core relaxation for core-guided MaxSAT solving. In: Michel, L.D. (ed.) 27th International Conference on Principles and Practice of Constraint Programming, CP 2021, Montpellier, France (Virtual Conference), 25–29 October 2021. LIPIcs, vol. 210, pp. 28:1–28:19. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPICS.CP.2021.28
Jabs, C., Berg, J., Ihalainen, H., Järvisalo, M.: Preprocessing in SAT-based multi-objective combinatorial optimization. In: Yap, R.H.C. (ed.) 29th International Conference on Principles and Practice of Constraint Programming, CP 2023, 27–31 August 2023, Toronto, Canada. LIPIcs, vol. 280, pp. 18:1–18:20. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2023). https://doi.org/10.4230/LIPICS.CP.2023.18
Jabs, C., Berg, J., Niskanen, A., Järvisalo, M.: MaxSAT-based bi-objective Boolean optimization. In: Meel, K.S., Strichman, O. (eds.) 25th International Conference on Theory and Applications of Satisfiability Testing, SAT 2022, 2–5 August 2022, Haifa, Israel. LIPIcs, vol. 236, pp. 12:1–12:23. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPICS.SAT.2022.12
Janota, M., Lynce, I., Manquinho, V.M., Marques-Silva, J.: PackUp: tools for package upgradability solving. J. Satisf. Boolean Model. Comput. 8(1/2), 89–94 (2012). https://doi.org/10.3233/SAT190090
Joshi, S., Martins, R., Manquinho, V.: Generalized totalizer encoding for pseudo-Boolean constraints. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 200–209. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5_15
Koshimura, M., Nabeshima, H., Fujita, H., Hasegawa, R.: Minimal model generation with respect to an atom set. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) Proceedings of the 7th International Workshop on First-Order Theorem Proving, FTP 2009, Oslo, Norway, 6–7 July 2009. CEUR Workshop Proceedings, vol. 556. CEUR-WS.org (2009). https://ceur-ws.org/Vol-556/paper06.pdf
Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: a partial Max-SAT solver. J. Satisf. Boolean Model. Comput. 8(1/2), 95–100 (2012). https://doi.org/10.3233/SAT190091
Maliotov, D., Meel, K.S.: MLIC: a MaxSAT-based framework for learning interpretable classification rules. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 312–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9_21
Marler, R., Arora, J.: Survey of multi-objective optimization methods for engineering. Struct. Multidisc. Optim. 26, 369–395 (2004). https://doi.org/10.1007/s00158-003-0368-6
Marques, R., Russo, L.M.S., Roma, N.: Flying tourist problem: flight time and cost minimization in complex routes. Expert Syst. Appl. 130, 172–187 (2019). https://doi.org/10.1016/J.ESWA.2019.04.024
Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability—Second Edition. Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 133–182. IOS Press (2021). https://doi.org/10.3233/FAIA200987
Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satisfiability. Computing Research Repository abs/0712.1097 (2007). http://arxiv.org/abs/0712.1097
Martins, R.: ASP to MaxSAT: metro, ShiftDesign, TimeTabling and BioRepair. In: Ansotegui, C., Bacchus, F., Järvislo, M., Martins, R. (eds.) MaxSAT Evaluation 2017: Solver and Benchmark Descriptions. Department of Computer Science Series of Publications B, vol. B-2017-2, p. 27. University of Helsinki (2017). http://hdl.handle.net/10138/228949
Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality constraints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–548. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_39
Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardinality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_41
Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution. In: Brodley, C.E., Stone, P. (eds.) Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, 27–31 July 2014, Québec City, Québec, Canada, pp. 2717–2723. AAAI Press (2014). https://doi.org/10.1609/AAAI.V28I1.9124
Paxian, T., Raiola, P., Becker, B.: On preprocessing for weighted MaxSAT. In: Henglein, F., Shoham, S., Vizel, Y. (eds.) VMCAI 2021. LNCS, vol. 12597, pp. 556–577. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67067-2_25
Piotrów, M.: UWrMaxSat: Efficient solver for MaxSAT and pseudo-Boolean problems. In: 32nd IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2020, Baltimore, MD, USA, 9–11 November 2020, pp. 132–136. IEEE (2020). https://doi.org/10.1109/ICTAI50040.2020.00031
Soh, T., Banbara, M., Tamura, N., Le Berre, D.: Solving multiobjective discrete optimization problems with propositional minimal model generation. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 596–614. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_38
Terra-Neves, M., Lynce, I., Manquinho, V.M.: Multi-objective optimization through Pareto minimal correction subsets. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, 13–19 July 2018, Stockholm, Sweden, pp. 5379–5383. ijcai.org (2018). https://doi.org/10.24963/IJCAI.2018/757
Paxian, T., Reimer, S., Becker, B.: Dynamic polynomial watchdog encoding for solving weighted MaxSAT. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 37–53. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_3
Acknowledgments
Work financially supported by Research Council of Finland (grants 342145, 356046). The authors thank the Finnish Computing Competence Infrastructure for computational and data storage resources.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jabs, C., Berg, J., Järvisalo, M. (2024). Core Boosting in SAT-Based Multi-objective Optimization. In: Dilkina, B. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2024. Lecture Notes in Computer Science, vol 14743. Springer, Cham. https://doi.org/10.1007/978-3-031-60599-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-60599-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-60601-4
Online ISBN: 978-3-031-60599-4
eBook Packages: Computer ScienceComputer Science (R0)