Abstract
Diabetes is a condition derived from high blood sugar levels for a prolonged period. Which triggers several complications such as anemia, blindness, erectile dysfunction, cardiovascular problems, high blood pressure, poor circulation, and a high probability of gangrene when there is a skin cut on an extremity where the most viable solution to risks is go septicemia or blood poisoning by pathogens generated by dead tissue is amputation of the limb. For such patients, where the limb amputation has already been carried out, tailored solutions are generated with the corresponding rehabilitation by learning to use this new tool to give them independence and inclusivity in their daily lives. Now, technology such as electromyographic sensors is required to read the electrical pulses generated by the muscles and then with artificial intelligence learn to interpret the electrical signals from the muscles of the patient's amputated limb. The main objective of this literature is to relate and obtain a prediction of the diabetes risk index of the general population, based on the incidence data of diabetic disease obtained by delegation in the United States, Mexico. -us through public health institutions. For the above, the prediction will be carried out by a multilayer perceptron neural network and an exploration of human-robot interface (HRI) solutions supported by electromyographic sensors will be carried out.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Liao, Z., et al.: Human–robot interface based on sEMG envelope signal for the collaborative wearable robot. Biomimetic Intell. Robot. (2023). https://doi.org/10.1016/j.birob.2022.100079
IMSS: Detección de Diabetes, por deledación (2023). https://datos.gob.mx/busca/dataset/deteccion-de-diabetes-por-delegacion
IMSS: istabla43_2022 - Detección padecimientos Diabetes por delegación, por año 2000 - 2022 (2023). http://datos.imss.gob.mx/dataset/informacion-en-salud/resource/60f146be-1528-4abe-8ecc-5daf8f8ca05c
Costa, L., et al.: Multilayer Perceptron. Introduction to Computational Intelligence, 105
Kumar Kain, N.: Understanding of Multilayer perceptron (MLP), 21 November 2018. https://medium.com/@AI_with_Kain/understanding-of-multilayer-perceptron-mlp-8f179c4a135f#:~:text=Each%20layer%20is%20represented%20as,b%20is%20the%20bias%20vector
Yao, S.-W., Ullah, N., Rehman, H.U., Hashemi, M.S., Mirzazadeh, M., Inc, M.: Dynamics on novel wave structures of non-linear Schrödinger equation via extended hyperbolic function method. Results Phys. 48, 106448 (2023). https://doi.org/10.1016/j.rinp.2023.106448
Zhang, J., Zhao, Y., Shone, F., Li, Z., et al.: Physics-informed deep learning for musculoskeletal modeling: predicting muscle forces and joint kinematics from surface EMG. Neural Syst. (2022). https://ieeexplore.ieee.org/abstract/document/9970372/
Ferreira, A.C.B.H., et al.: Neural network-based method to stratify people at risk for developing diabetic foot: a support system for health professionals. PLoS ONE 18(7), e0288466 (2023)
Bai, S., Islam, M.R., Power, V., OŚullivan, L.: User-centered development and performance assessment of a modular full-body exoskeleton (AXO-SUIT). Biomimetic Intell. Robot. 2(2), 100032 (2022)
Islam, M.R.U., Waris, A., Kamavuako, E.N., Bai, S.: A comparative study of motion detection with FMG and sEMG methods for assistive applications. J. Rehabil. Assist. Technol. Eng. 7, 2055668320938588 (2020)
Liu, J., Wang, C., He, B., Li, P., Wu, X.: Metric learning for robust gait phase recognition for a lower limb exoskeleton robot based on sEMG. IEEE Trans. Med. Robot. Bionics 4(2), 472–479 (2022)
Miften, F.S., Diykh, M., Abdulla, S., Siuly, S., Green, J.H., Deo, R.C.: A new framework for classification of multi-category hand grasps using EMG signals. Artif. Intell. (2021). https://www.sciencedirect.com/science/article/pii/S0933365720312707
Hill-Briggs, F., et al.: Social determinants of health and diabetes: a scientific review. Diabetes (2021). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7783927/
Sun, H., et al.: IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. (2022). https://www.sciencedirect.com/science/article/pii/S0168822721004782
Ellahham, S.: Artificial intelligence: the future for diabetes care. Am. J. Med. (2020). https://www.sciencedirect.com/science/article/pii/S0002934320303399
Cloete, L.: Diabetes mellitus: an overview of the types, symptoms, complications and management. Nurs. Std. (Royal College of Nursing (Great Britain) (2021). https://europepmc.org/article/med/34708622
Hasan, M.K., Alam, M.A., Das, D., Hossain, E., Hossain, M.: Diabetes prediction using ensembling of different machine learning classifiers. IEEE Access (2020). https://ieeexplore.ieee.org/abstract/document/9076634/
Fagherazzi, G., Ravaud, P.: Digital diabetes: perspectives for diabetes prevention, management and research. Diabetes Metab. (2019). https://www.sciencedirect.com/science/article/pii/S126236361830171X
Romero-Díaz, C., Duarte-Montero, D., Gutiérrez-Romero, S.A., Mendivil, C.O.: Diabetes and bone fragility. Diabetes Therapy (2021). https://doi.org/10.1007/s13300-020-00964-1
Saravanan, V., Nivurruti, M., Barde, K., Pillai, A.S., Woungang, I.: Reliable diabetes mellitus forecasting using artificial neural network multilayer perceptron. Artif. Intell. (2022). https://www.sciencedirect.com/science/article/pii/B9780128240540000137
Sreedevi, B., Durga Karthik, J., Glory Thephoral, M., Jeya Pandian, G., Revathy, G.: A novel neural network based model for diabetes prediction using multilayer perceptron and Jrip classifier. In: Ranganathan, G., Bestak, Robert, Fernando, Xavier (eds.) Pervasive Computing and Social Networking: Proceedings of ICPCSN 2022, pp. 345–351. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-2840-6_27
Song, H., Lee, S.: Implementation of diabetes incidence prediction using a multilayer perceptron neural network. In: 2021 IEEE International Conference on. ieeexplore.ieee.org (2021). https://ieeexplore.ieee.org/abstract/document/9669583/
Polat, S., Parlakpinar, H., Colak, C.: Estimation of the factors associated with diabetes mellitus by multilayer perceptron artificial neural network model. In: Neuroendocrinology. tnedcongress.org (2021). http://www.tnedcongress.org/wp-content/uploads/2020/11/PC-38.pdf
Verma, G., Verma, H.: A multilayer perceptron neural network model for predicting diabetes. Int. J. Grid Distrib. (2020). https://www.researchgate.net/profile/Garima-Verma-3/publication/341788367_A_Multilayer_Perceptron_Neural_Network_Model_For_Predicting_Diabetes/links/5ed4ce35299bf1c67d32265d/A-Multilayer-Perceptron-Neural-Network-Model-For-Predicting-Diabetes.pdf
Bai, S., Islam, M.R., Power, V., OŚullivan, L.: User-centered development and performance assessment of a modular full-body exoskeleton (AXO-SUIT). Biomimetic Intell. Robot. 2(2), 100032 (2022). https://doi.org/10.1016/j.birob.2021.100032
Ferreira, A.C.B.H., et al.: Neural network-based method to stratify people at risk for developing diabetic foot: a support system for health professionals. PLoS ONE 18(7), e0288466 (2023). https://doi.org/10.1371/journal.pone.0288466
Islam, M.R.U., Waris, A., Kamavuako, E.N., Bai, S.: A comparative study of motion detection with FMG and sEMG methods for assistive applications. J. Rehabil. Assist. Technol. Eng. 7, 2055668320938588 (2020). https://doi.org/10.1177/2055668320938588
Liao, Z., et al.: Human–robot interface based on sEMG envelope signal for the collaborative wearable robot. Biomimetic Intell. Robot., 100079 (2023). https://doi.org/10.1016/j.birob.2022.100079
Liu, J., Wang, C., He, B., Li, P., Wu, X.: Metric learning for robust gait phase recognition for a lower limb exoskeleton robot based on sEMG. IEEE Trans. Med. Robot. Bionics 4(2), 472–479 (2022). https://doi.org/10.1109/TMRB.2022.3166543
Miften, F.S., Diykh, M., Abdulla, S., Siuly, S., Green, J.H., Deo, R.C.: A new framework for classification of multi-category hand grasps using EMG signals. Artif. Intell. (2021). https://doi.org/10.1016/j.artmed.2020.101884
Zhang, J., et al.: Physics-informed deep learning for musculoskeletal modeling: Predicting muscle forces and joint kinematics from surface EMG. Neural Syst. (2022). https://doi.org/10.1109/TNSRE.2022.3226860
Acknowledgement
A thank deeply to the authors and researchers who collaborated with their advice and recommendations in the preparation of the present material. Sincerely thank to the Instituto Tecnológico de Tijuana for their invaluable support and Instituto Mexicano del Seguro Social (IMSS) for their providing generalousy the necessary information to this research.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cárdenas-Isla, H., Márquez, B.Y., Robles-Gallego, A., Magdaleno-Palencia, J.S. (2024). Human-Machine Interface Based on Electromyographic (EMG) Signals Aimed at Limb Rehabilitation for Diabetic Patients. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Poniszewska-Marańda, A. (eds) Good Practices and New Perspectives in Information Systems and Technologies. WorldCIST 2024. Lecture Notes in Networks and Systems, vol 985. Springer, Cham. https://doi.org/10.1007/978-3-031-60215-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-60215-3_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-60214-6
Online ISBN: 978-3-031-60215-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)