Human-Machine Interface Based on Electromyographic (EMG) Signals Aimed at Limb Rehabilitation for Diabetic Patients | SpringerLink
Skip to main content

Human-Machine Interface Based on Electromyographic (EMG) Signals Aimed at Limb Rehabilitation for Diabetic Patients

  • Conference paper
  • First Online:
Good Practices and New Perspectives in Information Systems and Technologies (WorldCIST 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 985))

Included in the following conference series:

  • 135 Accesses

Abstract

Diabetes is a condition derived from high blood sugar levels for a prolonged period. Which triggers several complications such as anemia, blindness, erectile dysfunction, cardiovascular problems, high blood pressure, poor circulation, and a high probability of gangrene when there is a skin cut on an extremity where the most viable solution to risks is go septicemia or blood poisoning by pathogens generated by dead tissue is amputation of the limb. For such patients, where the limb amputation has already been carried out, tailored solutions are generated with the corresponding rehabilitation by learning to use this new tool to give them independence and inclusivity in their daily lives. Now, technology such as electromyographic sensors is required to read the electrical pulses generated by the muscles and then with artificial intelligence learn to interpret the electrical signals from the muscles of the patient's amputated limb. The main objective of this literature is to relate and obtain a prediction of the diabetes risk index of the general population, based on the incidence data of diabetic disease obtained by delegation in the United States, Mexico. -us through public health institutions. For the above, the prediction will be carried out by a multilayer perceptron neural network and an exploration of human-robot interface (HRI) solutions supported by electromyographic sensors will be carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 31459
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liao, Z., et al.: Human–robot interface based on sEMG envelope signal for the collaborative wearable robot. Biomimetic Intell. Robot. (2023). https://doi.org/10.1016/j.birob.2022.100079

    Article  Google Scholar 

  2. IMSS: Detección de Diabetes, por deledación (2023). https://datos.gob.mx/busca/dataset/deteccion-de-diabetes-por-delegacion

  3. IMSS: istabla43_2022 - Detección padecimientos Diabetes por delegación, por año 2000 - 2022 (2023). http://datos.imss.gob.mx/dataset/informacion-en-salud/resource/60f146be-1528-4abe-8ecc-5daf8f8ca05c

  4. Costa, L., et al.: Multilayer Perceptron. Introduction to Computational Intelligence, 105

    Google Scholar 

  5. Kumar Kain, N.: Understanding of Multilayer perceptron (MLP), 21 November 2018. https://medium.com/@AI_with_Kain/understanding-of-multilayer-perceptron-mlp-8f179c4a135f#:~:text=Each%20layer%20is%20represented%20as,b%20is%20the%20bias%20vector

    Google Scholar 

  6. Yao, S.-W., Ullah, N., Rehman, H.U., Hashemi, M.S., Mirzazadeh, M., Inc, M.: Dynamics on novel wave structures of non-linear Schrödinger equation via extended hyperbolic function method. Results Phys. 48, 106448 (2023). https://doi.org/10.1016/j.rinp.2023.106448

  7. Zhang, J., Zhao, Y., Shone, F., Li, Z., et al.: Physics-informed deep learning for musculoskeletal modeling: predicting muscle forces and joint kinematics from surface EMG. Neural Syst. (2022). https://ieeexplore.ieee.org/abstract/document/9970372/

  8. Ferreira, A.C.B.H., et al.: Neural network-based method to stratify people at risk for developing diabetic foot: a support system for health professionals. PLoS ONE 18(7), e0288466 (2023)

    Article  Google Scholar 

  9. Bai, S., Islam, M.R., Power, V., OŚullivan, L.: User-centered development and performance assessment of a modular full-body exoskeleton (AXO-SUIT). Biomimetic Intell. Robot. 2(2), 100032 (2022)

    Google Scholar 

  10. Islam, M.R.U., Waris, A., Kamavuako, E.N., Bai, S.: A comparative study of motion detection with FMG and sEMG methods for assistive applications. J. Rehabil. Assist. Technol. Eng. 7, 2055668320938588 (2020)

    Google Scholar 

  11. Liu, J., Wang, C., He, B., Li, P., Wu, X.: Metric learning for robust gait phase recognition for a lower limb exoskeleton robot based on sEMG. IEEE Trans. Med. Robot. Bionics 4(2), 472–479 (2022)

    Article  Google Scholar 

  12. Miften, F.S., Diykh, M., Abdulla, S., Siuly, S., Green, J.H., Deo, R.C.: A new framework for classification of multi-category hand grasps using EMG signals. Artif. Intell. (2021). https://www.sciencedirect.com/science/article/pii/S0933365720312707

  13. Hill-Briggs, F., et al.: Social determinants of health and diabetes: a scientific review. Diabetes (2021). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7783927/

  14. Sun, H., et al.: IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. (2022). https://www.sciencedirect.com/science/article/pii/S0168822721004782

  15. Ellahham, S.: Artificial intelligence: the future for diabetes care. Am. J. Med. (2020). https://www.sciencedirect.com/science/article/pii/S0002934320303399

  16. Cloete, L.: Diabetes mellitus: an overview of the types, symptoms, complications and management. Nurs. Std. (Royal College of Nursing (Great Britain) (2021). https://europepmc.org/article/med/34708622

  17. Hasan, M.K., Alam, M.A., Das, D., Hossain, E., Hossain, M.: Diabetes prediction using ensembling of different machine learning classifiers. IEEE Access (2020). https://ieeexplore.ieee.org/abstract/document/9076634/

  18. Fagherazzi, G., Ravaud, P.: Digital diabetes: perspectives for diabetes prevention, management and research. Diabetes Metab. (2019). https://www.sciencedirect.com/science/article/pii/S126236361830171X

  19. Romero-Díaz, C., Duarte-Montero, D., Gutiérrez-Romero, S.A., Mendivil, C.O.: Diabetes and bone fragility. Diabetes Therapy (2021). https://doi.org/10.1007/s13300-020-00964-1

  20. Saravanan, V., Nivurruti, M., Barde, K., Pillai, A.S., Woungang, I.: Reliable diabetes mellitus forecasting using artificial neural network multilayer perceptron. Artif. Intell. (2022). https://www.sciencedirect.com/science/article/pii/B9780128240540000137

  21. Sreedevi, B., Durga Karthik, J., Glory Thephoral, M., Jeya Pandian, G., Revathy, G.: A novel neural network based model for diabetes prediction using multilayer perceptron and Jrip classifier. In: Ranganathan, G., Bestak, Robert, Fernando, Xavier (eds.) Pervasive Computing and Social Networking: Proceedings of ICPCSN 2022, pp. 345–351. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-2840-6_27

    Chapter  Google Scholar 

  22. Song, H., Lee, S.: Implementation of diabetes incidence prediction using a multilayer perceptron neural network. In: 2021 IEEE International Conference on. ieeexplore.ieee.org (2021). https://ieeexplore.ieee.org/abstract/document/9669583/

  23. Polat, S., Parlakpinar, H., Colak, C.: Estimation of the factors associated with diabetes mellitus by multilayer perceptron artificial neural network model. In: Neuroendocrinology. tnedcongress.org (2021). http://www.tnedcongress.org/wp-content/uploads/2020/11/PC-38.pdf

  24. Verma, G., Verma, H.: A multilayer perceptron neural network model for predicting diabetes. Int. J. Grid Distrib. (2020). https://www.researchgate.net/profile/Garima-Verma-3/publication/341788367_A_Multilayer_Perceptron_Neural_Network_Model_For_Predicting_Diabetes/links/5ed4ce35299bf1c67d32265d/A-Multilayer-Perceptron-Neural-Network-Model-For-Predicting-Diabetes.pdf

  25. Bai, S., Islam, M.R., Power, V., OŚullivan, L.: User-centered development and performance assessment of a modular full-body exoskeleton (AXO-SUIT). Biomimetic Intell. Robot. 2(2), 100032 (2022). https://doi.org/10.1016/j.birob.2021.100032

  26. Ferreira, A.C.B.H., et al.: Neural network-based method to stratify people at risk for developing diabetic foot: a support system for health professionals. PLoS ONE 18(7), e0288466 (2023). https://doi.org/10.1371/journal.pone.0288466

    Article  Google Scholar 

  27. Islam, M.R.U., Waris, A., Kamavuako, E.N., Bai, S.: A comparative study of motion detection with FMG and sEMG methods for assistive applications. J. Rehabil. Assist. Technol. Eng. 7, 2055668320938588 (2020). https://doi.org/10.1177/2055668320938588

  28. Liao, Z., et al.: Human–robot interface based on sEMG envelope signal for the collaborative wearable robot. Biomimetic Intell. Robot., 100079 (2023). https://doi.org/10.1016/j.birob.2022.100079

  29. Liu, J., Wang, C., He, B., Li, P., Wu, X.: Metric learning for robust gait phase recognition for a lower limb exoskeleton robot based on sEMG. IEEE Trans. Med. Robot. Bionics 4(2), 472–479 (2022). https://doi.org/10.1109/TMRB.2022.3166543

  30. Miften, F.S., Diykh, M., Abdulla, S., Siuly, S., Green, J.H., Deo, R.C.: A new framework for classification of multi-category hand grasps using EMG signals. Artif. Intell. (2021). https://doi.org/10.1016/j.artmed.2020.101884

  31. Zhang, J., et al.: Physics-informed deep learning for musculoskeletal modeling: Predicting muscle forces and joint kinematics from surface EMG. Neural Syst. (2022). https://doi.org/10.1109/TNSRE.2022.3226860

Download references

Acknowledgement

A thank deeply to the authors and researchers who collaborated with their advice and recommendations in the preparation of the present material. Sincerely thank to the Instituto Tecnológico de Tijuana for their invaluable support and Instituto Mexicano del Seguro Social (IMSS) for their providing generalousy the necessary information to this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hubet Cárdenas-Isla , Bogart Yail Márquez , Ashlee Robles-Gallego or José Sergio Magdaleno-Palencia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cárdenas-Isla, H., Márquez, B.Y., Robles-Gallego, A., Magdaleno-Palencia, J.S. (2024). Human-Machine Interface Based on Electromyographic (EMG) Signals Aimed at Limb Rehabilitation for Diabetic Patients. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Poniszewska-Marańda, A. (eds) Good Practices and New Perspectives in Information Systems and Technologies. WorldCIST 2024. Lecture Notes in Networks and Systems, vol 985. Springer, Cham. https://doi.org/10.1007/978-3-031-60215-3_5

Download citation

Publish with us

Policies and ethics