Abstract
We introduce a toolkit for transforming lattice-based hash-and-sign signature schemes into masking-friendly signatures secure in the t-probing model. Until now, efficiently masking lattice-based hash-and-sign schemes has been an open problem, with unsuccessful attempts such as Mitaka. A first breakthrough was made in 2023 with the NIST PQC submission Raccoon, although it was not formally proven.
Our main conceptual contribution is to realize that the same principles underlying Raccoon are very generic, and to find a systematic way to apply them within the hash-and-sign paradigm. Our main technical contribution is to formalize, prove, instantiate and implement a hash-and-sign scheme based on these techniques. Our toolkit includes noise flooding to mitigate statistical leaks, and an extended Strong Non-Interfering probing security (\(\textsf{SNIu} \)) property to handle masked gadgets with unshared inputs.
We showcase the efficiency of our techniques in a signature scheme, \(\mathsf {\mathsf {\textsf{Plover}} \text {-}\mathsf {\textsf{RLWE}} }\), based on (hint) Ring-LWE. It is the first lattice-based masked hash-and-sign scheme with quasi-linear complexity \(O(d \log d)\) in the number of shares d. Our performances are competitive with the state-of-the-art masking-friendly signature, the Fiat-Shamir scheme \(\textsf{Raccoon}\).
Part of this project was conducted while Guilhem Niot was a student at EPFL and ENS Lyon, interning at PQShield.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alagic, G., et al.: NISTIR 8413 – Status Report on the Third Round of the NIST Post-Quantum Cryptography Standardization Process (2022). https://doi.org/10.6028/NIST.IR.8413
Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015). http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
Azouaoui, M., et al.: Protecting dilithium against leakage revisited sensitivity analysis and improved implementations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(4), 58–79 (2023). https://doi.org/10.46586/tches.v2023.i4.58-79
Barthe, G., et al.: Strong non-interference and type-directed higher-order masking. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 116–129. ACM Press, October 2016. https://doi.org/10.1145/2976749.2978427
Barthe, G., et al.: Masking the GLP lattice-based signature scheme at any order. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 354–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_12
Battistello, A., Coron, J.-S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks and countermeasures on the ISW masking scheme. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 23–39. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2_2
Berzati, A., Viera, A.C., Chartouny, M., Madec, S., Vergnaud, D., Vigilant, D.: Exploiting intermediate value leakage in dilithium: a template-based approach. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(4), 188–210 (2023). https://doi.org/10.46586/tches.v2023.i4.188-210
Bronchain, O., Cassiers, G.: Bitslicing arithmetic/boolean masking conversions for fun and profit with application to lattice-based KEMs. IACR TCHES 2022(4), 553–588 (2022). https://doi.org/10.46586/tches.v2022.i4.553-588
Chuengsatiansup, C., Prest, T., Stehlé, D., Wallet, A., Xagawa, K.: ModFalcon: Compact signatures based on module-NTRU lattices. In: Sun, H.M., Shieh, S.P., Gu, G., Ateniese, G. (eds.) ASIACCS 2020, pp. 853–866. ACM Press, October 2020. https://doi.org/10.1145/3320269.3384758
Coron, J., Gérard, F., Montoya, S., Zeitoun, R.: High-order polynomial comparison and masking lattice-based encryption. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(1), 153–192 (2023). https://doi.org/10.46586/tches.v2023.i1.153-192
Coron, J., Gérard, F., Trannoy, M., Zeitoun, R.: High-order masking of NTRU. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(2), 180–211 (2023). https://doi.org/10.46586/tches.v2023.i2.180-211
Coron, J., Gérard, F., Trannoy, M., Zeitoun, R.: Improved gadgets for the high-order masking of dilithium. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(4), 110–145 (2023). https://doi.org/10.46586/tches.v2023.i4.110-145
Duc, A., Faust, S., Standaert, F.X.: Making masking security proofs concrete (or how to evaluate the security of any leaking device), extended version. J. Cryptol. 32(4), 1263–1297 (2019). https://doi.org/10.1007/s00145-018-9277-0
Espitau, T., Fouque, P.A., Gérard, F., Rossi, M., Takahashi, A., Tibouchi, M., Wallet, A., Yu, Y.: Mitaka: A simpler, parallelizable, maskable variant of falcon. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 222–253. Springer, Heidelberg (May / Jun 2022). https://doi.org/10.1007/978-3-031-07082-2_9
Espitau, T., Kirchner, P.: The nearest-colattice algorithm. Cryptology ePrint Archive, Report 2020/694 (2020). https://eprint.iacr.org/2020/694
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press, May 2008. https://doi.org/10.1145/1374376.1374407
Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the learning with errors assumption. In: Yao, A.C. (ed.) Innovations in Computer Science - ICS 2010, Tsinghua University, Beijing, China, 5–7 January 2010. Proceedings, pp. 230–240. Tsinghua University Press (2010). http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/19.html
Goubin, L.: A sound method for switching between Boolean and arithmetic masking. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 3–15. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_2
Guerreau, M., Martinelli, A., Ricosset, T., Rossi, M.: The hidden parallelepiped is back again: Power analysis attacks on falcon. IACR TCHES 2022(3), 141–164 (2022). https://doi.org/10.46586/tches.v2022.i3.141-164
Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27
Ito, A., Ueno, R., Homma, N.: On the success rate of side-channel attacks on masked implementations: information-theoretical bounds and their practical usage. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022, pp. 1521–1535. ACM Press, November 2022. https://doi.org/10.1145/3548606.3560579
Kannwischer, M.J., Genêt, A., Butin, D., Krämer, J., Buchmann, J.: Differential power analysis of XMSS and SPHINCS. In: Fan, J., Gierlichs, B. (eds.) COSADE 2018. LNCS, vol. 10815, pp. 168–188. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89641-0_10
Karabulut, E., Alkim, E., Aysu, A.: Single-trace side-channel attacks on \(\omega \)-small polynomial sampling: with applications to NTRU, NTRU prime, and CRYSTALS-DILITHIUM. In: IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2021, Tysons Corner, VA, USA, 12–15 December 2021, pp. 35–45. IEEE (2021). https://doi.org/10.1109/HOST49136.2021.9702284
Kim, D., Lee, D., Seo, J., Song, Y.: Toward practical lattice-based proof of knowledge from hint-MLWE. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part V. LNCS, vol. 14085, pp. 549–580. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-38554-4_18
Kim, M., Lee, D., Seo, J., Song, Y.: Accelerating HE operations from key decomposition technique. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part IV. LNCS, vol. 14084, pp. 70–92. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-38551-3_3
Masure, L., Rioul, O., Standaert, F.: A nearly tight proof of Duc et al.’s conjectured security bound for masked implementations. In: Buhan, I., Schneider, T. (eds.) CARDIS 2022. LNCS, vol. 13820, pp. 69–81. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-25319-5_4
Mathieu-Mahias, A.: Securisation of implementations of cryptographic algorithms in the context of embedded systems. Theses, Université Paris-Saclay, December 2021. https://theses.hal.science/tel-03537322
Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization. Math. Comput. 48(177), 243–264 (1987). https://doi.org/10.1090/s0025-5718-1987-0866113-7
del Pino, R., et al.: Raccoon, a side-channel secure signature scheme. Technical report. National Institute of Standards and Technology (2023). https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
del Pino, R., Katsumata, S., Maller, M., Mouhartem, F., Prest, T., Saarinen, M.J.: Threshold raccoon: practical threshold signatures from standard lattice assumptions. Cryptology ePrint Archive, Paper 2024/184 (2024). https://eprint.iacr.org/2024/184
del Pino, R., Prest, T., Rossi, M., Saarinen, M.O.: High-order masking of lattice signatures in quasilinear time. In: 44th IEEE Symposium on Security and Privacy, SP 2023, San Francisco, CA, USA, 21–25 May 2023, pp. 1168–1185. IEEE (2023). https://doi.org/10.1109/SP46215.2023.10179342
Prest, T.: A key-recovery attack against Mitaka in the \(t\)-probing model. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023, Part I. LNCS, vol. 13940, pp. 205–220. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-31368-4_8
Saarinen, M.J.O., Rossi, M.: Mask compression: high-order masking on memory-constrained devices. Cryptology ePrint Archive, Paper 2023/1117 (2023). https://eprint.iacr.org/2023/1117
Yu, Y., Jia, H., Wang, X.: Compact lattice gadget and its applications to hash-and-sign signatures. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part V. LNCS, vol. 14085, pp. 390–420. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-38554-4_13
Zhang, S., Lin, X., Yu, Y., Wang, W.: Improved power analysis attacks on falcon. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part IV. LNCS, vol. 14007, pp. 565–595. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30634-1_19
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 International Association for Cryptologic Research
About this paper
Cite this paper
Esgin, M.F., Espitau, T., Niot, G., Prest, T., Sakzad, A., Steinfeld, R. (2024). \(\mathsf {\textsf{Plover}}\): Masking-Friendly Hash-and-Sign Lattice Signatures. In: Joye, M., Leander, G. (eds) Advances in Cryptology – EUROCRYPT 2024. EUROCRYPT 2024. Lecture Notes in Computer Science, vol 14657. Springer, Cham. https://doi.org/10.1007/978-3-031-58754-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-58754-2_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-58753-5
Online ISBN: 978-3-031-58754-2
eBook Packages: Computer ScienceComputer Science (R0)