A Resolvent Quasi-Monte Carlo Method for Estimating the Minimum Eigenvalues Using the Error Balancing | SpringerLink
Skip to main content

A Resolvent Quasi-Monte Carlo Method for Estimating the Minimum Eigenvalues Using the Error Balancing

  • Conference paper
  • First Online:
Large-Scale Scientific Computations (LSSC 2023)

Abstract

There are iterative Monte Carlo (MC) methods that can be used for estimating the extreme eigenvalues of large dimensional matrices. The Power MC method allows for finding the approximate maximum eigenvalue of the considered matrix. In the case when we need to estimate the minimum eigenvalue, it is recommended to use the Resolvent MC method. The recent developments of quasi-random sequence generators and their successful application for solving large-scale problems motivate us to investigate the quasi-Monte Carlo (QMC) approaches for solving eigenvalue problems. In this work, we propose a Resolvent QMC algorithm to estimate the minimum eigenvalues of large-scale dimension symmetric matrices. To generate the quasi-random sequences we use BRODA’s Sobol Randomized Sequence Generator (RSG). Numerical experiments were done to investigate the balance between both errors - systematic and stochastic errors, which depend on the power of the resolvent matrix, the parameter controlling the convergence in the iteration process of the Resolvent MC/QMC method, and the number of realizations of the MC/QMC estimator. Numerical results show good scalability in the case of using Sobol sequences on GPU accelerators.

The work of the first author has been partially supported by the National Geoinformation Center (part of National Roadmap of RIs) under grants No. D01-164/28.07.2022 and has also been accomplished with partial support by Grant No. BG05M2OP001-1.001-0003, financed by the Science and Education for Smart Growth Operational Program (2014–2020) and co-financed by the European Union through the European Structural and Investment funds. The work of the other authors was accomplished with the financial support of the MES by Grant No D01-168/28.07.2022 for providing access to e-infrastructure of the NCHDC - part of the Bulgarian National Roadmap on RIs and as well as by grant No 30 from CAF America.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8464
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rotter, I.: A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A: Math. Theor. 42(No15), 153001 (2009). https://doi.org/10.1088/1751-8113/42/15/153001

    Article  MathSciNet  Google Scholar 

  2. Muminov, M.I., Rasulov, T.H.: Embedded eigenvalues of a Hamiltonian in bosonic fock space. Commun. Math. Anal. 17(1), 1–22 (2014)

    MathSciNet  Google Scholar 

  3. Golub, G.H., Van Loon, C.F.: Matrix Computations. The Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

  4. Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Dover Publications, Mineola; Wiley, New York (1996). ISBN 0-486-68029-0

    Google Scholar 

  5. Alexandrov, V., et al.: On the preconditioned quasi-Monte Carlo algorithm for matrix computations. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2015. LNCS, vol. 9374, pp. 163–171. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26520-9_17

    Chapter  Google Scholar 

  6. Dimov, I.T., et al.: Robustness and applicability of Markov chain Monte Carlo algorithms for eigenvalue problems. Appl. Math. Modelling 32(8), 1511–1529 (2008). https://doi.org/10.1016/j.apm.2007.04.012

    Article  MathSciNet  Google Scholar 

  7. Mascagni, M., Karaivanova, A.: A Monte Carlo approach for finding more than one eigenpair. In: Dimov, I., Lirkov, I., Margenov, S., Zlatev, Z. (eds.) NMA 2002. LNCS, vol. 2542, pp. 123–131. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36487-0_13

    Chapter  Google Scholar 

  8. Mascagni, M., Karaivanova, A.: Matrix computations using quasirandom sequences. In: Vulkov, L., Yalamov, P., Waśniewski, J. (eds.) NAA 2000. LNCS, vol. 1988, pp. 552–559. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45262-165

    Chapter  Google Scholar 

  9. Dimov, I., Karaivanova, A.: A power method with monte Carlo iterations. In: Proceeding Recent Advances in Numerical Methods and Applications II, World Scientific, pp. 239–247 (1999). https://doi.org/10.1142/9789814291071_0022

  10. Dimov, I.: Monte Carlo Methods For Applied Scientists. World Scientific, Singapore (2008). ISBN:9812779892

    Google Scholar 

  11. Dimov, I.T., Dimov, T.T., Gurov, T.V.: A new iterative Monte Carlo approach for inverse matrix problem. JCAM 92(1), 15–36 (1998). https://doi.org/10.1016/S0377-0427(98)00043-0

    Article  MathSciNet  Google Scholar 

  12. Sobol, I.M., Shukhman, B.V.: Integration with quasirandom sequences: numerical experience. Int. J. Modern Phys. C 6(2), 263–275 (1995)

    Article  MathSciNet  Google Scholar 

  13. Sobol, I.M., Asotsky, D., Kreinin, A., Kucherenko, S.: Construction and comparison of high-dimensional Sobol’ generator. WILMOTT Mag. 64–79, 2012 (2011)

    Google Scholar 

  14. Sobol, I.M.: Uniformly distributed sequences with an additional property of uniformity. USSR Comput. Math. Math. Phys. 16(5), 236–242 (1976). https://doi.org/10.1016/0041-5553(76)90154-3

    Article  MathSciNet  Google Scholar 

  15. Gurova, S.-M., Karaivanova, A.: Monte Carlo method for estimating eigenvalues using error balancing. In: Lirkov, I., Margenov, S. (eds.) LSSC 2021. LNCS, vol. 13127, pp. 447–455. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97549-4_51

    Chapter  Google Scholar 

  16. Faure, H., Lemieux, C.H.: Generalized Halton sequences in 2008: a comparative study. ACM Trans. Model. Comp. Simul. 19(404), 1–31 (2009). https://doi.org/10.1145/1596519.1596520

    Article  Google Scholar 

  17. Joe, S., Kuo, F.Y.: Constructing Sobol sequences with better two-dimensional projections. SIAM J. Sci. Comput. 30(5), 2635–54 (2008)

    Article  MathSciNet  Google Scholar 

  18. BRODA’s Sobol RSG. https://broda.co.uk/software.html. Accessed 15 Apr 2023

  19. Basu, K., Owen, A.B.: Transformations and hardy-krause variation. SIAM J. Numer. Anal. 54(3), 1946–1966 (2016). https://doi.org/10.1137/15M1052184

    Article  MathSciNet  Google Scholar 

  20. HPC center at IICT: https://ict.acad.bg/?page_id=1229. Accessed 15 Apr 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvi-Maria Gurova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gurova, SM., Atanassov, E., Karaivanova, A. (2024). A Resolvent Quasi-Monte Carlo Method for Estimating the Minimum Eigenvalues Using the Error Balancing. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computations. LSSC 2023. Lecture Notes in Computer Science, vol 13952. Springer, Cham. https://doi.org/10.1007/978-3-031-56208-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56208-2_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56207-5

  • Online ISBN: 978-3-031-56208-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics