Lightweight Modality Adaptation to Sequential Recommendation via Correlation Supervision | SpringerLink
Skip to main content

Lightweight Modality Adaptation to Sequential Recommendation via Correlation Supervision

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14608))

Included in the following conference series:

  • 1091 Accesses

Abstract

In Sequential Recommenders (SR), encoding and utilizing modalities in an end-to-end manner is costly in terms of modality encoder sizes. Two-stage approaches can mitigate such concerns, but they suffer from poor performance due to modality forgetting, where the sequential objective overshadows modality representation. We propose a lightweight knowledge distillation solution that preserves both merits: retaining modality information and maintaining high efficiency. Specifically, we introduce a novel method that enhances the learning of embeddings in SR through the supervision of modality correlations. The supervision signals are distilled from the original modality representations, including both (1) holistic correlations, which quantify their overall associations, and (2) dissected correlation types, which refine their relationship facets (honing in on specific aspects like color or shape consistency).To further address the issue of modality forgetting, we propose an asynchronous learning step, allowing the original information to be retained longer for training the representation learning module. Our approach is compatible with various backbone architectures and outperforms the top baselines by 6.8% on average. We empirically demonstrate that preserving original feature associations from modality encoders significantly boosts task-specific recommendation adaptation. Additionally, we find that larger modality encoders (e.g., Large Language Models) contain richer feature sets which necessitate more fine-grained modeling to reach their full performance potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, Y., et al.: Semi-supervised knowledge distillation for tiny defect detection. In: 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 1010–1015. IEEE (2022)

    Google Scholar 

  2. Chen, X., Cao, Q., Zhong, Y., Zhang, J., Gao, S., Tao, D.: Dearkd: data-efficient early knowledge distillation for vision transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12052–12062 (2022)

    Google Scholar 

  3. Chen, X., Zhang, Y., Xu, H., Qin, Z., Zha, H.: Adversarial distillation for efficient recommendation with external knowledge. ACM Trans. Inf. Syst. (TOIS) 37(1), 1–28 (2018)

    Article  Google Scholar 

  4. Cohen, I., et al.: Pearson correlation coefficient. Noise Reduct. Speech Process. 1–4 (2009)

    Google Scholar 

  5. Covington, P., Adams, J., Sargin, E.: Deep neural networks for youtube recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 191–198 (2016)

    Google Scholar 

  6. Elsayed, S., Brinkmeyer, L., Schmidt-Thieme, L.: End-to-end image-based fashion recommendation. In: Corona Pampin, H.J., Shirvany, R. (eds.) RECSYS 2022, vol. 981, pp. 109–119. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22192-7_7

    Chapter  Google Scholar 

  7. Gao, Q., Zhao, Y., Li, G., Tong, T.: Image super-resolution using knowledge distillation. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11362, pp. 527–541. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20890-5_34

    Chapter  Google Scholar 

  8. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TIIS) 5(4), 1–19 (2015)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. He, R., McAuley, J.: Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering. In: Proceedings of the 25th International Conference on World Wide Web, pp. 507–517 (2016)

    Google Scholar 

  11. He, R., McAuley, J.: VBPR: visual bayesian personalized ranking from implicit feedback. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

    Google Scholar 

  12. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 639–648 (2020)

    Google Scholar 

  13. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks (2016)

    Google Scholar 

  14. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  15. Hou, Y., He, Z., McAuley, J., Zhao, W.X.: Learning vector-quantized item representation for transferable sequential recommenders. In: Proceedings of the ACM Web Conference 2023, pp. 1162–1171 (2023)

    Google Scholar 

  16. Hu, H., Guo, W., Liu, Y., Kan, M.Y.: Adaptive multi-modalities fusion in sequential recommendation systems. In: Proceedings of the 32nd ACM International Conference on Information & Knowledge Management (2023)

    Google Scholar 

  17. Hu, H., Pan, L., Ran, Y., Kan, M.Y.: Modeling and leveraging prerequisite context in recommendation. In: Proceedings of the 16th ACM Conference on Recommender Systems, Context-Aware Recommender System Workshop (2022)

    Google Scholar 

  18. Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2010)

    Article  Google Scholar 

  19. Jiao, X., et al.: Tinybert: distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351 (2020)

  20. Kang, W.C., Fang, C., Wang, Z., McAuley, J.: Visually-aware fashion recommendation and design with generative image models. In: Proceedings of the 2017 IEEE International Conference on Data Mining (ICDM), pp. 207–216. IEEE (2017)

    Google Scholar 

  21. Kang, W.C., McAuley, J.: Self-attentive sequential recommendation. In: Proceedings of the 2018 International Conference on Data Mining (ICDM), pp. 197–206. IEEE (2018)

    Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2015)

    Google Scholar 

  23. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  24. Lee, S.H., Kim, D.H., Song, B.C.: Self-supervised knowledge distillation using singular value decomposition. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 335–350 (2018)

    Google Scholar 

  25. Lee, Y., Jang, K., Goo, J., Jung, Y., Kim, H.: Fithubert: going thinner and deeper for knowledge distillation of speech self-supervised learning (2022)

    Google Scholar 

  26. Lian, D., Wang, H., Liu, Z., Lian, J., Chen, E., Xie, X.: Lightrec: a memory and search-efficient recommender system. In: Proceedings of The Web Conference 2020, pp. 695–705 (2020)

    Google Scholar 

  27. Liu, C., Li, X., Cai, G., Dong, Z., Zhu, H., Shang, L.: Noninvasive self-attention for side information fusion in sequential recommendation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4249–4256 (2021)

    Google Scholar 

  28. Liu, D., Cheng, P., Dong, Z., He, X., Pan, W., Ming, Z.: A general knowledge distillation framework for counterfactual recommendation via uniform data. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 831–840 (2020)

    Google Scholar 

  29. Liu, F., Cheng, Z., Sun, C., Wang, Y., Nie, L., Kankanhalli, M.: User diverse preference modeling by multimodal attentive metric learning. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1526–1534 (2019)

    Google Scholar 

  30. Liu, Q., Zhu, J., Dai, Q., Wu, X.: Boosting deep CTR prediction with a plug-and-play pre-trainer for news recommendation. In: Proceedings of the 29th International Conference on Computational Linguistics, pp. 2823–2833 (2022)

    Google Scholar 

  31. Liu, S., Chen, Z., Liu, H., Hu, X.: User-video co-attention network for personalized micro-video recommendation. In: The World Wide Web Conference, pp. 3020–3026 (2019)

    Google Scholar 

  32. Liu, Y., et al.: End-to-end speech translation with knowledge distillation (2019)

    Google Scholar 

  33. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  34. Liu, Z., Ma, Y., Schubert, M., Ouyang, Y., Xiong, Z.: Multi-modal contrastive pre-training for recommendation. In: Proceedings of the 2022 International Conference on Multimedia Retrieval, pp. 99–108 (2022)

    Google Scholar 

  35. McAuley, J., Targett, C., Shi, Q., Van Den Hengel, A.: Image-based recommendations on styles and substitutes. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 43–52 (2015)

    Google Scholar 

  36. Oramas, S., Nieto, O., Sordo, M., Serra, X.: A deep multimodal approach for cold-start music recommendation. In: Proceedings of the 2nd Workshop on Deep Learning for Recommender Systems, pp. 32–37 (2017)

    Google Scholar 

  37. Park, M., Lee, K.: Exploiting negative preference in content-based music recommendation with contrastive learning. In: Proceedings of the 16th ACM Conference on Recommender Systems, pp. 229–236 (2022)

    Google Scholar 

  38. Raffel, C.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(1), 5485–5551 (2020)

    MathSciNet  Google Scholar 

  39. Rajasegaran, J., Khan, S., Hayat, M., Khan, F.S., Shah, M.: Self-supervised knowledge distillation for few-shot learning (2021)

    Google Scholar 

  40. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)

  41. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter (2019)

    Google Scholar 

  42. Singer, U., et al.: Sequential modeling with multiple attributes for watchlist recommendation in e-commerce. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 937–946 (2022)

    Google Scholar 

  43. Song, K., Sun, Q., Xu, C., Zheng, K., Yang, Y.: Self-supervised multi-modal sequential recommendation. arXiv preprint arXiv:2304.13277 (2023)

  44. Su, M., Gu, G., Ren, X., Fu, H., Zhao, Y.: Semi-supervised knowledge distillation for cross-modal hashing. IEEE Trans. Multimedia 25, 28–35 (2021)

    Google Scholar 

  45. Tan, Y.K., Xu, X., Liu, Y.: Improved recurrent neural networks for session-based recommendations. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 17–22 (2016)

    Google Scholar 

  46. Touvron, H., et al.: Llama: open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023)

  47. Wei, Y., Wang, X., Nie, L., He, X., Hong, R., Chua, T.S.: Mmgcn: multi-modal graph convolution network for personalized recommendation of micro-video. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1437–1445 (2019)

    Google Scholar 

  48. Wu, C., Wu, F., Qi, T., Huang, Y.: Empowering news recommendation with pre-trained language models. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1652–1656 (2021)

    Google Scholar 

  49. Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based recommendation with graph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 346–353 (2019)

    Google Scholar 

  50. Xia, X., Yin, H., Yu, J., Wang, Q., Xu, G., Nguyen, Q.V.H.: On-device next-item recommendation with self-supervised knowledge distillation. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 546–555 (2022)

    Google Scholar 

  51. Xie, Y., Zhou, P., Kim, S.: Decoupled side information fusion for sequential recommendation. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1611–1621 (2022)

    Google Scholar 

  52. Yuan, Z., et al.: Where to go next for recommender systems? id-vs. modality-based recommender models revisited. arXiv preprint arXiv:2303.13835 (2023)

  53. Zeng, A., et al.: GLM-130b: an open bilingual pre-trained model. In: Proceedings of the Eleventh International Conference on Learning Representations (ICLR) (2023)

    Google Scholar 

  54. Zhang, J., Zhu, Y., Liu, Q., Wu, S., Wang, S., Wang, L.: Mining latent structures for multimedia recommendation. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 3872–3880 (2021)

    Google Scholar 

  55. Zhang, S., Choromanska, A.E., LeCun, Y.: Deep learning with elastic averaging SGD. Adv. Neural. Inf. Process. Syst. 28, 685–693 (2015)

    Google Scholar 

  56. Zhang, Y., Xu, X., Zhou, H., Zhang, Y.: Distilling structured knowledge into embeddings for explainable and accurate recommendation. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 735–743 (2020)

    Google Scholar 

  57. Zhao, B., Cui, Q., Song, R., Qiu, Y., Liang, J.: Decoupled knowledge distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11953–11962 (2022)

    Google Scholar 

  58. Zhou, Y., Chen, H., Lin, H., Heng, P.-A.: Deep semi-supervised knowledge distillation for overlapping cervical cell instance segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 521–531. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_51

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengchang Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, H., Liu, Q., Li, C., Kan, MY. (2024). Lightweight Modality Adaptation to Sequential Recommendation via Correlation Supervision. In: Goharian, N., et al. Advances in Information Retrieval. ECIR 2024. Lecture Notes in Computer Science, vol 14608. Springer, Cham. https://doi.org/10.1007/978-3-031-56027-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56027-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56026-2

  • Online ISBN: 978-3-031-56027-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics