Calibration of Inverse Perspective Mapping for a Humanoid Robot | SpringerLink
Skip to main content

Calibration of Inverse Perspective Mapping for a Humanoid Robot

  • Conference paper
  • First Online:
RoboCup 2023: Robot World Cup XXVI (RoboCup 2023)

Abstract

This paper proposes a method to calibrate the model used for inverse perspective mapping of humanoid robots. It aims at providing a reliable way to determine the robot’s position given the known objects around it. The position of the objects can be calculated using coordinate transforms applied to the data from the robot’s vision device. Those transforms are dependent on the robot’s joint angles (such as knee, hip) and the length of some components (e.g. torso, thighs, calves). In practice, because of the sensitivity of the transforms with respect to the inaccuracies of the mechanical data, this calculation may yield errors that make it inadequate for the purpose of determining the objects’ positions. The proposed method reduces those errors using an optimization algorithm that can find offsets that can compensate those mechanical inaccuracies. Using this method, a kid-sized humanoid robot was able to determine the position of objects up to 2 m away from the itself with an average of 3.4 cm of error.

Supported by CNPQ (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. RoboCup. RoboCup Humanoid League. https://humanoid.robocup.org/ October 2020

  2. Muzio, A., Aguiar, L., Máximo, M.R.O.A., Pinto, S.C.: Monte Carlo Localization with Field Lines Observations for Simulated Humanoid Robotic Soccer (2018)

    Google Scholar 

  3. Bestmann, M., Engelke, T., Fiedler, N.: TORSO-21 Dataset: Typical Objects in RoboCup Soccer (2021). https://github.com/bit-bots/TORSO_21_dataset

  4. Tanveer, M.H., Sgorbissa, A.: An inverse perspective mapping approach using monocular camera of Pepper humanoid robot to determine the position of other moving robot in plane (2018)

    Google Scholar 

  5. OpenCV, Camera Calibration. https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html

  6. Maximo, M.R.O.A.: Automatic walking step duration through model predictive control. Dissertation Ph.D. thesis, Aeronautics Institute of Technology (2017)

    Google Scholar 

  7. OpenCV, Detection of ArUco Markers (2020)

    Google Scholar 

  8. RoboCup. Humanoid League Laws of the Game (2020). http://www.robocuphumanoid.org/wp-content/uploads/RCHL-2019-Rules-changesMarked.pdf

  9. Szeliski, R.: Computer Vision Algorithms and Applications, pp. 42–49. Springer, Cham (2011). https://doi.org/10.1007/978-1-84882-935-0

    Book  Google Scholar 

  10. Kajita, S., Hirukawa, H., Yokoi, K., Harada, K.: Introduction to Humanoid Robotics, pp. 19–42. Springer, Cham (2014). https://doi.org/10.1007/978-3-642-54536-8

    Book  Google Scholar 

  11. École Polytechnique. The CMA Evolution Strategy (2020). http://www.cmap.polytechnique.fr/nikolaus.hansen/cmaesintro.html

  12. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9, 112–147 (1998)

    Article  MathSciNet  Google Scholar 

  13. Gondry, L., Hofer, L., Laborde-Zubieta, P., et al.: Rhoban Football Club: RoboCup Humanoid KidSize 2019 Champion Team Paper (2019)

    Google Scholar 

  14. Mahmudi, H., Gholami, A., Delaravan, M.H., et al.: MRL Champion Team Paper in Humanoid TeenSize League of RoboCup 2019 (2019)

    Google Scholar 

Download references

Acknowledgment

Francisco da Silva thanks CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for his undergraduate research scholarship. Marcos Maximo is partially funded by CNPq through the grant 307525/2022-8. Takashi Yoneyama is partially funded by CNPq through the grant 304134/2-18-0. We thank the entire ITAndroids team, especially Lucas Steuernagel, for helping during data collection tests. We thank Robocup’s sponsors MathWorks, FESTO, SoftBank Robotics and United Robotics Group for making all this development in robotics possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Bruno Dias Ribeiro da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

da Silva, F.B.D.R., de Albuquerque Máximo, M.R.O., Yoneyama, T., Barroso, D.H.V., Aki, R.T. (2024). Calibration of Inverse Perspective Mapping for a Humanoid Robot. In: Buche, C., Rossi, A., Simões, M., Visser, U. (eds) RoboCup 2023: Robot World Cup XXVI. RoboCup 2023. Lecture Notes in Computer Science(), vol 14140. Springer, Cham. https://doi.org/10.1007/978-3-031-55015-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55015-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55014-0

  • Online ISBN: 978-3-031-55015-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics