Abstract
The rapid advancements in digital technologies have paved the way for the development and utilization of digital twins that allow bridging the gap between physical systems and their virtual representations. This digital twin concept is gaining importance especially in the design of complex IoT and Cyber-Physical systems. At design time a digital twin can in fact be used to represent the to-be system reflecting its characteristics in the digital world and especially to conduct simulations before the system is actually implemented.
This paper reports about an approach for the design and implementation of a Digital Twin Prototype for a project involving an IoT life-saving system designed to support the rescue operation of people during a seismic event. The approach as well as the software tool can be adopted to other IoT or Cyber-Physical systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
SAFE project: http://projects.cs.unicam.it/safeproject/index.html.
- 2.
VITALITY project: https://vitality-spoke6.unicam.it/en/.
- 3.
ThingsBoard IoT platform: https://thingsboard.io/.
- 4.
The SAFE gateway implements an Earthquake Early-Warning detection system through a specific accelerometer. In case of an earthquake, the gateway sends a command to the SAFE devices requesting them to switch to War Mode.
- 5.
Blender https://www.blender.org/.
- 6.
Three.js: https://threejs.org/.
- 7.
Cannon-es: https://pmndrs.github.io/cannon-es/.
References
Bourr, K., Corradini, F., Pettinari, S., Re, B., Rossi, L., Tiezzi, F.: Disciplined use of BPMN for mission modeling of multi-robot systems. In: Proceedings of the Forum at Practice of Enterprise Modeling, Riga, Latvia, 24–26 November 2021, vol. 3045, pp. 1–10. CEUR Workshop Proceedings (2021)
Compagnucci, I., Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F.: A systematic literature review on IoT-aware business process modeling views, requirements and notations. Softw. Syst. Model. 22(3), 969–1004 (2023)
Corradini, F., Fedeli, A., Fornari, F., Polini, A., Re, B.: DTMN a modelling notation for digital twins. In: Sales, T.P., Proper, H.A., Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds.) EDOC 2022. LNBIP, vol. 466, pp. 63–78. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-26886-1_4
Corradini, F., Pettinari, S., Re, B., Rossi, L., Tiezzi, F.: An approach to support digital process twin. In: IEEE DASC/PiCom/CBDCom/CyberSciTech 2022, Falerna, Italy, 12–15 September 2022, pp. 1–4. IEEE (2022)
Corradini, F., Pettinari, S., Re, B., Rossi, L., Tiezzi, F.: Executable digital process twins: Towards the enhancement of process-driven systems. Big Data Cogn. Comput. 7(3), 139 (2023)
Dalibor, M., Jansen, N., Rumpe, B., Schmalzing, D., Wachtmeister, L., Wimmer, M., Wortmann, A.: A cross-domain systematic mapping study on software engineering for digital twins. J. Syst. Softw. 193, 111361 (2022)
Fuller, A., Fan, Z., Day, C., Barlow, C.: Digital twin: enabling technologies, challenges and open research. IEEE Access 8, 108952–108971 (2020)
Grieves, M.: Intelligent digital twins and the development and management of complex systems. Digital Twin 2(8), 1–8 (2022)
Grieves, M., Vickers, J.: Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Kahlen, F.-J., Flumerfelt, S., Alves, A. (eds.) Transdisciplinary Perspectives on Complex Systems, pp. 85–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-38756-7_4
Hasan, A., Hu, Z., Haghshenas, A., Karlsen, A., Alaliyat, S., Cali, U.: An interactive digital twin platform for offshore wind farms’ development. In: Karaarslan, E., Aydin, Ö., Cali, Ü., Challenger, M. (eds.) Digital Twin Driven Intelligent Systems and Emerging Metaverse, pp. 269–281. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-0252-1_13
Hofmann, W., Branding, F.: Implementation of an IoT-and cloud-based digital twin for real-time decision support in port operations. IFAC-PapersOnLine 52(13), 2104–2109 (2019)
Ihirwe, F., Ruscio, D.D., Mazzini, S., Pierini, P., Pierantonio, A.: Low-code engineering for internet of things: a state of research. In: ACM/IEEE 23rd International Conference on Model Driven Engineering Languages and Systems, Canada, 18–23 October, 2020, Companion Proceedings, pp. 74:1–74:8. ACM (2020)
Jones, D., Snider, C., Nassehi, A., Yon, J., Hicks, B.: Characterising the digital twin: a systematic literature review. CIRP J. Manuf. Sci. Technol. 29, 36–52 (2020)
Karakra, A., Fontanili, F., Lamine, E., Lamothe, J., Taweel, A.: Pervasive computing integrated discrete event simulation for a hospital digital twin. In: 15th IEEE/ACS International Conference on Computer Systems and Applications, Aqaba, Jordan, 28 October–1 November 1 2018, pp. 1–6. IEEE Computer Society (2018)
Larsen, P.G., Fitzgerald, J., Woodcock, J.: How do we engineer trustworthy digital twins? Res. Direct.: Cyber-Phys. Syst. 1–6 (2023)
Lehner, D., et al.: Digital twin platforms: requirements, capabilities, and future prospects. IEEE Softw. 39(2), 53–61 (2022)
Mihai, S., et al.: Digital twins: a survey on enabling technologies, challenges, trends and future prospects. IEEE Commun. Surv. Tutor. 24(4), 2255–2291 (2022)
Pietroni, L., Mascitti, J., Galloppo, D.: Life-saving furniture during an earthquake. intelligent, interconnected and interacting. AGATHÓN \(|\) Int. J. Archit. Art Design 10, 218–229 (2021)
Researchandmarkets: Digital twins market by technology, twinning type, cyber to-physical solutions, use cases and applications in industry verticals 2022–2027. https://www.researchandmarkets.com/report/digital-twin
Semeraro, C., Lezoche, M., Panetto, H., Dassisti, M.: Digital twin paradigm: a systematic literature review. Comput. Ind. 130, 103469 (2021)
Thelen, A., et al.: A comprehensive review of digital twin-part 1: modeling and twinning enabling technologies. Struct. Multidiscip. Optim. 65(12), 354 (2022)
Tuong, N., Jump, A., Casey, D.: Emerging tech impact radar: 2023: gartner research excerpt. https://www.gartner.com/en/doc/emerging-technologies-and-trends-impact-radar-excerpt
Valderas, P.: Supporting the implementation of digital twins for IoT-enhanced BPs. In: Nurcan, S., Opdahl, A.L., Mouratidis, H., Tsohou, A. (eds.) RCIS 2023. LNBIP, vol. 476, pp. 222–238. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33080-3_14
Valderas, P., Torres, V., Serral, E.: Towards an interdisciplinary development of IoT-enhanced business processes. Bus. Inf. Syst. Eng. 65(1), 25–48 (2023)
Acknowledgements
This work has been partially supported by the European Union - NextGenerationEU - National Recovery and Resilience Plan, Mission 4 Education and Research - Component 2 From research to business - Investment 1.5, ECS_00000041-VITALITY - Innovation, digitalisation and sustainability for the diffused economy in Central Italy.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Callisto De Donato, M., Corradini, F., Fornari, F., Re, B., Romagnoli, M. (2024). Design and Development of a Digital Twin Prototype for the SAFE Project. In: Sales, T.P., de Kinderen, S., Proper, H.A., Pufahl, L., Karastoyanova, D., van Sinderen, M. (eds) Enterprise Design, Operations, and Computing. EDOC 2023 Workshops . EDOC 2023. Lecture Notes in Business Information Processing, vol 498. Springer, Cham. https://doi.org/10.1007/978-3-031-54712-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-54712-6_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-54711-9
Online ISBN: 978-3-031-54712-6
eBook Packages: Computer ScienceComputer Science (R0)