Real-Time Emotion Recognition in Online Video Conferences for Medical Consultations | SpringerLink
Skip to main content

Real-Time Emotion Recognition in Online Video Conferences for Medical Consultations

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2023)

Abstract

In this paper, we present a novel solution for real-time emotion analysis in video conferencing, aiming to enhance therapies for both patients and therapists. Building upon the SenseCare project, we extend its capabilities to include a video conferencing platform with scalable real-time emotion analysis using widely available software and frameworks avoiding critical vendor locks. Our architecture focuses on ease of adaptation and further development, connecting a WebRTC conferencing platform to a scalable Kubernetes backend for emotion analysis. Emphasizing low latency, we implement the producer-consumer pattern and utilize a message broker. For emotion analysis, we use convolution neural networks. We propose a methodology for identifying an optimal batch size that maximizes backend efficiency while maintaining low latency. Our approach exhibits scalability, allowing for seamless adaptation during periods of high system utilization. Our findings demonstrate the feasibility of employing CNNs for sub-second emotion analysis on an affordable Kubernetes cluster, enabling multiple users to effectively engage in the system as patients and therapists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mobile Vs. Desktop Internet Usage (2023). https://www.broadbandsearch.net/blog/mobile-desktop-internet-usage-statistics

  2. WebRTC (2021). https://webrtc.org/

  3. eduMEET - web-based videoconferencing platform (2023). https://edumeet.org/

  4. Keycloak (2023). https://www.keycloak.org/

  5. MediaPipe (2023). https://google.github.io/mediapipe/

  6. Messaging that just works - RabbitMQ (2023). https://www.rabbitmq.com/

  7. TensorFlow (2023). https://www.tensorflow.org/

  8. Bazarevsky, V., Kartynnik, Y., Vakunov, A., Raveendran, K., Grundmann, M.: BlazeFace: sub-millisecond neural face detection on mobile GPUs (2019). https://doi.org/10.48550/arXiv.1907.05047. http://arxiv.org/abs/1907.05047. arXiv:1907.05047 [cs]

  9. Bond, R.R.: SenseCare: using affective computing to manage and care for the emotional wellbeing of older people. In: Giokas, K., Bokor, L., Hopfgartner, F. (eds.) eHealth 360\(^\circ \). LNICST, vol. 181, pp. 352–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49655-9_42

    Chapter  Google Scholar 

  10. Donovan, R., et al.: SenseCare: using automatic emotional analysis to provide effective tools for supporting, pp. 2682–2687 (2018). https://doi.org/10.1109/BIBM.2018.8621250

  11. Franzen, M., Gresser, M.S., Müller, T., Mauser, P.D.S.: Developing emotion recognition for video conference software to support people with autism. arXiv:2101.10785 [cs] (2021)

  12. Glueckauf, R.L., et al.: Survey of psychologists’ telebehavioral health practices: technology use, ethical issues, and training needs. Prof. Psychol. Res. Pract. 49(3), 205 (2018). https://doi.org/10.1037/pro0000188. https://psycnet.apa.org/fulltext/2018-28691-004.pdf. publisher: US: American Psychological Association

  13. Grozev, B.: Efficient and scalable video conferences with selective forwarding units and WebRTC. Ph.D. thesis, Université de Strasbourg (2019). https://doi.org/10.13140/RG.2.2.11791.20645

  14. Healy, M., Donovan, R., Walsh, P., Zheng, H.: A machine learning emotion detection platform to support affective well being. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2694–2700 (2018). https://doi.org/10.1109/BIBM.2018.8621562

  15. Howard, A., et al.: Searching for MobileNetV3 (2019). http://arxiv.org/abs/1905.02244. arXiv:1905.02244 [cs]

  16. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 253–256. IEEE, Paris, France (2010). https://doi.org/10.1109/ISCAS.2010.5537907. http://ieeexplore.ieee.org/document/5537907/

  17. Maier, D.: SourceCode Paper-Realtime-Emotionrecognition. https://github.com/DennisMaier/Paper-Realtime-Emotionrecognition

  18. Sander, J., et al.: Online therapy: an added value for inpatient routine care? Perspectives from mental health care professionals. Euro. Arch. Psychiatry Clin. Neurosci. 272, 107–118 (2021). https://doi.org/10.1007/s00406-021-01251-1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Maier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maier, D., Hemmje, M., Kikic, Z., Wefers, F. (2024). Real-Time Emotion Recognition in Online Video Conferences for Medical Consultations. In: Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P.M., Umeton, R. (eds) Machine Learning, Optimization, and Data Science. LOD 2023. Lecture Notes in Computer Science, vol 14505. Springer, Cham. https://doi.org/10.1007/978-3-031-53969-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53969-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53968-8

  • Online ISBN: 978-3-031-53969-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics