Abstract
Continuous optimization is a central task in computer science. Hyperheuristics prove to be an effective mechanism for intelligent operator selection and generation for optimization problems. In this paper we propose a two level hyperheuristic framework for continuous optimization problems. The base level is used to optimize the problem with operator sequences that are modeled by a nested Markov chain, while the hyper level searches the operator sequence and parameter space with simulated annealing. The experimental results show that the proposed approach matches the performance of another state-of-the-art hyperheuristic using significantly less operators and computational time. The model outperforms the simple metaheuristic operator approach and the random hyperheuristic search strategy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A Classification of Hyper-Heuristic Approaches: Revisited. Springer, Heidelberg (2019)
Caraffini, F., Neri, F., Epitropakis, M.: Hyperspam: a study on hyper-heuristic coordination strategies in the continuous domain. Inf. Sci. 477, 186–202 (2019). https://doi.org/10.1016/j.ins.2018.10.033
Chakhlevitch, K., Cowling, P.: Hyperheuristics: recent developments. In: Cotta, C., Sevaux, M., Sörensen, K. (eds.) Adaptive and Multilevel Metaheuristics. SCI, vol. 136, pp. 3–29. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79438-7_1
Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44629-X_11
Cruz-Duarte, J.M., Amaya, I., Ortiz-Bayliss, J.C., Conant-Pablos, S.E., Terashima-Marín, H., Shi, Y.: Hyper-heuristics to customise metaheuristics for continuous optimisation. Swarm Evol. Comput. 66, 100935 (2021)
Csébfalvi, A.: A hybrid meta-heuristic method for continuous engineering optimization. Periodica Polytechnica Civil Eng. 53(2), 93–100 (2009)
Drake, J.H., Kheiri, A., Özcan, E., Burke, E.K.: Recent advances in selection hyper-heuristics. Eur. J. Oper. Res. 285(2), 405–428 (2020)
Han, L., Kendall, G.: An investigation of a tabu assisted hyper-heuristic genetic algorithm. In: The 2003 Congress on Evolutionary Computation, CEC 2003, vol. 3, pp. 2230–2237. IEEE (2003)
Han, L., Kendall, G., Cowling, P.: An adaptive length chromosome hyper-heuristic genetic algorithm for a trainer scheduling problem. In: Recent Advances in Simulated Evolution and Learning, pp. 506–525. World Scientific (2004)
Kendall, G., Li, J.: Competitive travelling salesmen problem: a hyper-heuristic approach. J. Oper. Res. Soc. 64(2), 208–216 (2013)
Lin, J., Luo, D., Li, X., Gao, K., Liu, Y.: Differential evolution based hyper-heuristic for the flexible job-shop scheduling problem with fuzzy processing time. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS, pp. 75–86. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68759-9_7
Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
Olgun, B., Koç, Ç., Altıparmak, F.: A hyper heuristic for the green vehicle routing problem with simultaneous pickup and delivery. Comput. Ind. Eng. 153, 107010 (2021)
Patriksson, M.: A survey on the continuous nonlinear resource allocation problem. Eur. J. Oper. Res. 185(1), 1–46 (2008)
Peraza-Vázquez, H., Torres-Huerta, A.M., Flores-Vela, A.: Self-adaptive differential evolution hyper-heuristic with applications in process design. Computación y Sistemas 20(2), 173–193 (2016)
Qin, W., Zhuang, Z., Huang, Z., Huang, H.: A novel reinforcement learning-based hyper-heuristic for heterogeneous vehicle routing problem. Comput. Ind. Eng. 156, 107252 (2021)
Ryser-Welch, P., Miller, J.F.: A review of hyper-heuristic frameworks. In: Proceedings of the EVO20 Workshop, AISB, vol. 2014 (2014)
Sim, K., Hart, E., Paechter, B.: A lifelong learning hyper-heuristic method for bin packing. Evol. Comput. 23(1), 37–67 (2015)
Sánchez, M., Cruz-Duarte, J.M., Ortíz-Bayliss, J., Ceballos, H., Terashima-Marin, H., Amaya, I.: A systematic review of hyper-heuristics on combinatorial optimization problems. IEEE Access 8, 128068–128095 (2020). https://doi.org/10.1109/ACCESS.2020.3009318
Villela Tinoco, J.C., Coello Coello, C.A.: hypDE: a hyper-heuristic based on differential evolution for solving constrained optimization problems. In: Schütze, O., et al. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II. AISC, vol. 175, pp. 267–282. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-31519-0_17
Weber, G.W., Özöğür-Akyüz, S., Kropat, E.: A review on data mining and continuous optimization applications in computational biology and medicine. Birth Defects Res. C Embryo Today 87(2), 165–181 (2009)
Yan, J., Wu, X.: A genetic based hyper-heuristic algorithm for the job shop scheduling problem. In: 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, vol. 1, pp. 161–164. IEEE (2015)
Yang, C., Peng, S., Jiang, B., Wang, L., Li, R.: Hyper-heuristic genetic algorithm for solving frequency assignment problem in TD-SCDMA. In: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 1231–1238 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bándi, N., Gaskó, N. (2024). Solving Continuous Optimization Problems with a New Hyperheuristic Framework. In: Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P.M., Umeton, R. (eds) Machine Learning, Optimization, and Data Science. LOD 2023. Lecture Notes in Computer Science, vol 14505. Springer, Cham. https://doi.org/10.1007/978-3-031-53969-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-53969-5_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53968-8
Online ISBN: 978-3-031-53969-5
eBook Packages: Computer ScienceComputer Science (R0)