Solving Continuous Optimization Problems with a New Hyperheuristic Framework | SpringerLink
Skip to main content

Solving Continuous Optimization Problems with a New Hyperheuristic Framework

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14505))

Abstract

Continuous optimization is a central task in computer science. Hyperheuristics prove to be an effective mechanism for intelligent operator selection and generation for optimization problems. In this paper we propose a two level hyperheuristic framework for continuous optimization problems. The base level is used to optimize the problem with operator sequences that are modeled by a nested Markov chain, while the hyper level searches the operator sequence and parameter space with simulated annealing. The experimental results show that the proposed approach matches the performance of another state-of-the-art hyperheuristic using significantly less operators and computational time. The model outperforms the simple metaheuristic operator approach and the random hyperheuristic search strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A Classification of Hyper-Heuristic Approaches: Revisited. Springer, Heidelberg (2019)

    Google Scholar 

  2. Caraffini, F., Neri, F., Epitropakis, M.: Hyperspam: a study on hyper-heuristic coordination strategies in the continuous domain. Inf. Sci. 477, 186–202 (2019). https://doi.org/10.1016/j.ins.2018.10.033

    Article  Google Scholar 

  3. Chakhlevitch, K., Cowling, P.: Hyperheuristics: recent developments. In: Cotta, C., Sevaux, M., Sörensen, K. (eds.) Adaptive and Multilevel Metaheuristics. SCI, vol. 136, pp. 3–29. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79438-7_1

    Chapter  Google Scholar 

  4. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44629-X_11

    Chapter  Google Scholar 

  5. Cruz-Duarte, J.M., Amaya, I., Ortiz-Bayliss, J.C., Conant-Pablos, S.E., Terashima-Marín, H., Shi, Y.: Hyper-heuristics to customise metaheuristics for continuous optimisation. Swarm Evol. Comput. 66, 100935 (2021)

    Article  Google Scholar 

  6. Csébfalvi, A.: A hybrid meta-heuristic method for continuous engineering optimization. Periodica Polytechnica Civil Eng. 53(2), 93–100 (2009)

    Article  Google Scholar 

  7. Drake, J.H., Kheiri, A., Özcan, E., Burke, E.K.: Recent advances in selection hyper-heuristics. Eur. J. Oper. Res. 285(2), 405–428 (2020)

    Article  MathSciNet  Google Scholar 

  8. Han, L., Kendall, G.: An investigation of a tabu assisted hyper-heuristic genetic algorithm. In: The 2003 Congress on Evolutionary Computation, CEC 2003, vol. 3, pp. 2230–2237. IEEE (2003)

    Google Scholar 

  9. Han, L., Kendall, G., Cowling, P.: An adaptive length chromosome hyper-heuristic genetic algorithm for a trainer scheduling problem. In: Recent Advances in Simulated Evolution and Learning, pp. 506–525. World Scientific (2004)

    Google Scholar 

  10. Kendall, G., Li, J.: Competitive travelling salesmen problem: a hyper-heuristic approach. J. Oper. Res. Soc. 64(2), 208–216 (2013)

    Article  Google Scholar 

  11. Lin, J., Luo, D., Li, X., Gao, K., Liu, Y.: Differential evolution based hyper-heuristic for the flexible job-shop scheduling problem with fuzzy processing time. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS, pp. 75–86. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68759-9_7

    Chapter  Google Scholar 

  12. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  13. Olgun, B., Koç, Ç., Altıparmak, F.: A hyper heuristic for the green vehicle routing problem with simultaneous pickup and delivery. Comput. Ind. Eng. 153, 107010 (2021)

    Article  Google Scholar 

  14. Patriksson, M.: A survey on the continuous nonlinear resource allocation problem. Eur. J. Oper. Res. 185(1), 1–46 (2008)

    Article  MathSciNet  Google Scholar 

  15. Peraza-Vázquez, H., Torres-Huerta, A.M., Flores-Vela, A.: Self-adaptive differential evolution hyper-heuristic with applications in process design. Computación y Sistemas 20(2), 173–193 (2016)

    Article  Google Scholar 

  16. Qin, W., Zhuang, Z., Huang, Z., Huang, H.: A novel reinforcement learning-based hyper-heuristic for heterogeneous vehicle routing problem. Comput. Ind. Eng. 156, 107252 (2021)

    Article  Google Scholar 

  17. Ryser-Welch, P., Miller, J.F.: A review of hyper-heuristic frameworks. In: Proceedings of the EVO20 Workshop, AISB, vol. 2014 (2014)

    Google Scholar 

  18. Sim, K., Hart, E., Paechter, B.: A lifelong learning hyper-heuristic method for bin packing. Evol. Comput. 23(1), 37–67 (2015)

    Article  Google Scholar 

  19. Sánchez, M., Cruz-Duarte, J.M., Ortíz-Bayliss, J., Ceballos, H., Terashima-Marin, H., Amaya, I.: A systematic review of hyper-heuristics on combinatorial optimization problems. IEEE Access 8, 128068–128095 (2020). https://doi.org/10.1109/ACCESS.2020.3009318

    Article  Google Scholar 

  20. Villela Tinoco, J.C., Coello Coello, C.A.: hypDE: a hyper-heuristic based on differential evolution for solving constrained optimization problems. In: Schütze, O., et al. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II. AISC, vol. 175, pp. 267–282. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-31519-0_17

    Chapter  Google Scholar 

  21. Weber, G.W., Özöğür-Akyüz, S., Kropat, E.: A review on data mining and continuous optimization applications in computational biology and medicine. Birth Defects Res. C Embryo Today 87(2), 165–181 (2009)

    Article  Google Scholar 

  22. Yan, J., Wu, X.: A genetic based hyper-heuristic algorithm for the job shop scheduling problem. In: 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, vol. 1, pp. 161–164. IEEE (2015)

    Google Scholar 

  23. Yang, C., Peng, S., Jiang, B., Wang, L., Li, R.: Hyper-heuristic genetic algorithm for solving frequency assignment problem in TD-SCDMA. In: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 1231–1238 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nándor Bándi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bándi, N., Gaskó, N. (2024). Solving Continuous Optimization Problems with a New Hyperheuristic Framework. In: Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P.M., Umeton, R. (eds) Machine Learning, Optimization, and Data Science. LOD 2023. Lecture Notes in Computer Science, vol 14505. Springer, Cham. https://doi.org/10.1007/978-3-031-53969-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53969-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53968-8

  • Online ISBN: 978-3-031-53969-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics