Maximizing Accuracy in AI-Driven Pattern Detection in Cardiac Care | SpringerLink
Skip to main content

Maximizing Accuracy in AI-Driven Pattern Detection in Cardiac Care

  • Conference paper
  • First Online:
Intelligent Human Computer Interaction (IHCI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14531))

Included in the following conference series:

  • 516 Accesses

Abstract

Artificial Intelligence (AI) has laid down the platform where all the emerging fields can benefit for detection of patterns. In similar, evolving AI technology has revolutionized the traditional healthcare technology to other level of technological advancement. Hence, Machine learning paradigms are designed to transform the era of learning and retrieval of hidden patterns from the healthcare databases. The current scope of the work focuses on detecting patterns from car diac care database using machine learning. The database comprise of several features such as age, gender, smoking variable, blood pressure, diabetes, alcohol consumption, sleep variables and other features which can be the potential cause for the prognosis of the disease Further, the databases applicability is measured with different classifiers such K nearest neighbours (KNN), Adaboost, XGboost, Gradient Boost, Decision Tree Logistic Regression, and Random Forest Classifiers to determine the most relevant classifier for the prognosis of the disease. The results suggest that Xgboost works efficiently with higher accuracy rate as compared to other classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, M., Hao, Y., Zhang, N.: Hospital admission prediction based on healthcare information system data. J. Biomed. Inform. 45(5), 905–911 (2012)

    Google Scholar 

  2. Khera, A.V., et al.: Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50(9), 1219–1224 (2018)

    Article  Google Scholar 

  3. Musunuru, K., et al.: Basic concepts and potential applications of genetics and genomics for cardiovascular and stroke clinicians: a scientific statement from the American Heart Association. Circ. Genom. Precis. Med. 12(11), e000046 (2019)

    Google Scholar 

  4. Bibault, J.E., Giraud, P., Burgun, A., Big Data and Machine Learning in Radiation Oncology Collaboration (B-DaMIC): Big data and machine learning in radiation oncology: state of the art and future prospects. Cancer Lett. 471, 1–8 (2019)

    Google Scholar 

  5. Zhang, Z., Chen, J., Ma, G., Yang, Y., Wu, Y.: Predicting the onset of acute myocardial infarction with a machine learning model using population-based medical databases. Front. Physiol. 10, 130 (2019)

    Google Scholar 

  6. Obermeyer, Z., Powers, B., Vogeli, C., Mullainathan, S.: Dissecting racial bias in an algorithm used to manage the health of populations. Science 366(6464), 447–453 (2019)

    Article  Google Scholar 

  7. Fonseca, C.G., et al.: The cardiac atlas project—an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 36(16), 4160–4167 (2020)

    Google Scholar 

  8. Maurovich-Horvat, P., Ferencik, M., Voros, S., Merkely, B., Hoffmann, U.: Comprehensive plaque assessment by coronary CT angiography. Nat. Rev. Cardiol. 16(12), 723–737 (2019)

    Google Scholar 

  9. Hazra, A., Mandal, S., Gupta, A., Mukherjee, A.: Heart disease diagnosis and prediction using machine learning and data mining techniques: a review. Adv. Comput. Sci. Technol. 10, 2137–2159 (2017)

    Google Scholar 

  10. Varma, G., Chauhan, R., Singh, D.: Sarve: synthetic data and local differential privacy for private frequency estimation. Cybersecurity 5, 26 (2022). https://doi.org/10.1186/s42400-022-00129-6

    Article  Google Scholar 

  11. Patel, J., Upadhyay, P., Patel, D.: Heart disease prediction using machine learning and data mining technique. J. Comput. Sci. Electron. 7, 129–137 (2016)

    Google Scholar 

  12. Zinat Motlagh, S.F., Chaman, R., Ghafari, S.R., Parisay, Z., Golabi, M.R., Eslami, A.A., et al.: Knowledge, treatment, control, and risk factors for hypertension among adults in Southern Iran. Int. J. Hypertens. 2015 (2015)

    Google Scholar 

  13. Noncommunicable diseases Fact Sheet. World Health Organization (2021). https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases

  14. Mittal, B.V., Singh, A.K.: Hypertension in the developing world: challenges and opportunities. Am. J. Kidney Dis. 55(3), 590–598 (2010)

    Article  Google Scholar 

  15. Gaziano, T.A., Bitton, A., Anand, S., Abrahams-Gessel, S., Murphy, A.: Growing epidemic of coronary heart disease in low-and middle-income countries. Curr. Probl. Cardiol. 35(2), 72–115 (2010)

    Article  Google Scholar 

  16. Buettner, R., Schunter, M.: Efficient machine learning based detection of heart disease. In: 2019 IEEE International Conference on E-Health Networking, Application & Services (HealthCom). IEEE (2019)

    Google Scholar 

  17. Roth, G.A., Mensah, G.A., Johnson, C.O., Addolorato, G., Ammirati, E., Baddour, L.M., et al.: Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J. Am. Coll. Cardiol. 76(25), 2982–3021 (2020)

    Article  Google Scholar 

  18. Hemingway, H., Langenberg, C., Damant, J., Frost, C., Pyörälä, K., Barrett-Connor, E.: Prevalence of angina in women versus men: a systematic review and meta-analysis of international variations across 31 countries. Circulation 117(12), 1526–1536 (2008)

    Article  Google Scholar 

  19. Stanaway, J.D., Afshin, A., Gakidou, E., Lim, S.S., Abate, D., Abate, K.H., et al.: Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 392(10159), 1923–1994 (2018)

    Article  Google Scholar 

  20. Cardiovascular disease mortality in the developing countries. World Health Statist Quart, vol. 46, pp. 89–150 (1993)

    Google Scholar 

  21. Yadav, D.P., Sharma, A., Singh, M., Goyal, A.: Feature extraction based machine learning for human burn diagnosis from burn images. IEEE J. Transl. Eng. Health Med. 7, 1–7 (2019). Art no. 1800507. https://doi.org/10.1109/JTEHM.2019.2923628

  22. Kopp, W.: How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab. Syndr. Obesity Targets Ther. 12, 2221 (2019)

    Article  Google Scholar 

  23. Lalkhen, H., Mash, R.: Multimorbidity in non-communicable diseases in South African primary healthcare. S. Afr. Med. J. 105(2), 134 (2015)

    Article  Google Scholar 

  24. Hajar, R.: Risk factors for coronary artery disease: historical perspectives. Heart Views Official J. Gulf Heart Assoc. 18(3), 109–114 (2017). https://doi.org/10.4103/HEARTVIEWS.HEARTVIEWS_106_17

    Article  Google Scholar 

  25. Kandaswamy, E., Zuo, L.: Recent advances in treatment of coronary artery disease: role of science and technology. Int. J. Mol. Sci. 19(2), 424 (2018). https://doi.org/10.3390/ijms19020424

    Article  Google Scholar 

  26. Shahwan-Akl, L.: Cardiovascular disease risk factors among adult Australian-Lebanese in Melbourne. Int. J. Res. Nurs. 1, 1–7 (2010)

    Article  Google Scholar 

  27. Helma, C., Gottmann, E., Kramer, S.: Knowledge discovery and data mining in toxicology. Stat. Methods Med. Res. 9, 329–358 (2000)

    Article  Google Scholar 

  28. Kiyong, N., Heon Gyu, L., Keun Ho, R.: Data mining approach for diagnosing heart dis- ease. Korea Research Institute of Standards and Science, vol. 10, no. 2, pp. 147–154 (2007)

    Google Scholar 

  29. Kaggle. https://www.kaggle.com/code/andls555/heart-disease-prediction/notebook

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhananjay Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chauhan, R., Singh, D. (2024). Maximizing Accuracy in AI-Driven Pattern Detection in Cardiac Care. In: Choi, B.J., Singh, D., Tiwary, U.S., Chung, WY. (eds) Intelligent Human Computer Interaction. IHCI 2023. Lecture Notes in Computer Science, vol 14531. Springer, Cham. https://doi.org/10.1007/978-3-031-53827-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53827-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53826-1

  • Online ISBN: 978-3-031-53827-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics