Better Hide Communities: Benchmarking Community Deception Algorithms | SpringerLink
Skip to main content

Better Hide Communities: Benchmarking Community Deception Algorithms

  • Conference paper
  • First Online:
Complex Networks & Their Applications XII (COMPLEX NETWORKS 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1144))

Included in the following conference series:

  • 1047 Accesses

Abstract

This paper introduces the Better Hide Communities (BHC) benchmark dataset, purposefully crafted for gauging the efficacy of current and prospective community deception algorithms. BHC facilitates the evaluation of algorithmic performance in identifying the best set of updates to apply to a network to hide a target community from community detection algorithms. We believe that BHC will help in advancing the development of community deception algorithms and in promoting a deeper understanding of algorithmic capabilities in applying deceptive practices within communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech.-Theory E 10, P10008 (2008)

    Google Scholar 

  2. Bonald, T., Charpentier, B., Galland, A., Hollocou, A.: Hierarchical graph clustering using node pair sampling. arXiv preprint arXiv:1806.01664 (2018)

  3. Cazabet, R., Rossetti, G., Milli, L.: CDlib: a python library to extract, compare and evaluate communities from complex networks (extended abstract). In: Proceedings of MARAMI. CEUR-WS.org (2022)

    Google Scholar 

  4. Chakraborty, T., Srinivasan, S., Ganguly, N., Mukherjee, A., Bhowmick, S.: Permanence and community structure in complex networks. ACM TKDD 11(2), 1–34 (2016)

    Google Scholar 

  5. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6) (2004)

    Google Scholar 

  6. Fionda, V., Palopoli, L., Panni, S., Rombo, S.E.: Protein-protein interaction network querying by a “focus and zoom” approach. In: BIRD, CCIS, vol. 13, pp. 331–346 (2008)

    Google Scholar 

  7. Fionda, V., Palopoli, L., Panni, S., Rombo, S.E.: A technique to search for functional similarities in protein-protein interaction networks. Int. J. Data Min. Bioinform. 3(4), 431–453 (2009)

    Article  Google Scholar 

  8. Fionda, V., Gutierrez, C., Pirrò, G.: Building knowledge maps of web graphs. Artif. Intell. 239, 143–167 (2016)

    Article  MathSciNet  Google Scholar 

  9. Fionda, V., Pirrò, G.: Community deception or: how to stop fearing community detection algorithms. IEEE Trans. Knowl. Data Eng. 30(4), 660–673 (2018)

    Article  Google Scholar 

  10. Fionda, V., Pirrò, G.: Community deception in networks: where we are and where we should go. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds.) Complex Networks & Their Applications X: Volume 2, Proceedings of the Tenth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2021, pp. 144–155. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93413-2_13

  11. Fionda, V., Madi, S.A., Pirrò, G.: Community deception: from undirected to directed networks. Soc. Netw. Anal. Min. 12(1) (2022)

    Google Scholar 

  12. Fionda, V., Pirrò, G.: Community deception in attributed networks. IEEE Trans. Comput. Soc. Syst. (2022)

    Google Scholar 

  13. Liu, Y., Liu, J., Zhang, Z., Zhu, L., Li, A.: REM: from structural entropy to community structure deception. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  14. Mittal, S., Sengupta, D., Chakraborty, T.: Hide and seek: outwitting community detection algorithms. IEEE Trans. Comput. Soc. Syst. 8(4), 799–808 (2021). https://doi.org/10.1109/TCSS.2021.3062711

  15. Nagaraja, S.: The impact of unlinkability on adversarial community detection: effects and countermeasures. In: Atallah, M.J., Hopper, N.J. (eds.) Privacy Enhancing Technologies. LNCS, vol. 6205, pp. 253–272. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14527-8_15

  16. Newman, M.E.J.: Modularity and community structure in networks. PNAS 103(23), 8577–8582 (2006)

    Google Scholar 

  17. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3) (2006)

    Google Scholar 

  18. Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. Graph Algorithms Appl. 10(2), 191–218 (2006)

    Google Scholar 

  19. Revelle, M., Domeniconi, C., Sweeney, M., Johri, A.: Finding community topics and membership in graphs. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS, vol. 9285, pp. 625–640. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23525-7_38

  20. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. U.S.A. 105(4), 1118–1123 (2008)

    Article  Google Scholar 

  21. Sobolevsky, S., Campari, R., Belyi, A., Ratti, C.: General optimization technique for high-quality community detection in complex networks. Phys. Rev. E 90(1) (2014)

    Google Scholar 

  22. Traag, V.A., Waltman, L., van Eck, N.J.: From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep.9(1) (2019)

    Google Scholar 

  23. Waniek, M., Michalak, T.P., Wooldridge, M.J., Rahwan, T.: Hiding individuals and communities in a social network. Nat. Hum. Behav. 2(2), 139–147 (2018)

    Google Scholar 

  24. Yang, J., McAuley, J., Leskovec, J.: Community detection in networks with node attributes. In: ICMD, pp. 1151–1156 (2013)

    Google Scholar 

  25. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by MUR under PRIN project HypeKG Prot. 2022Y34XNM, CUP H53D23003710006; PNRR MUR project PE0000013-FAIR, Spoke 9 - WP9.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Fionda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fionda, V. (2024). Better Hide Communities: Benchmarking Community Deception Algorithms. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1144. Springer, Cham. https://doi.org/10.1007/978-3-031-53503-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53503-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53502-4

  • Online ISBN: 978-3-031-53503-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics