A Comparative Analysis of Information Cascade Prediction Using Dynamic Heterogeneous and Homogeneous Graphs | SpringerLink
Skip to main content

A Comparative Analysis of Information Cascade Prediction Using Dynamic Heterogeneous and Homogeneous Graphs

  • Conference paper
  • First Online:
Complex Networks & Their Applications XII (COMPLEX NETWORKS 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1144))

Included in the following conference series:

  • 1090 Accesses

Abstract

Understanding information cascades in social networks is a critical research area with implications in various domains, such as viral marketing, opinion formation, and misinformation propagation. In information cascade prediction problem, one of the most important factors is the cascade structure of the social network, which can be described as a cascade graph, global graph, or an r-reachable graph. However, the majority of existing studies primarily focus on a singular type of relationship within the social network, relying on the homogeneous graph neural network. We introduce two novel approaches for heterogeneous social network cascading and analyze whether heterogeneous social networks have higher predictive accuracy than homogeneous networks, taking into account the potential differential effects of temporal sequences on the models. Further, our work highlights that the selection of edge types plays an important role in the accuracy of predicting information cascades within social networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bikhchandani, S., Hirshleifer, D., Welch, I.: A theory of fads, fashion, custom, and cultural change as informational cascades. J. Polit. Econ. 100, 992–1026 (1992)

    Article  Google Scholar 

  2. Subramani, M.R., Rajagopalan, B.: Knowledge-sharing and influence in online social networks via viral marketing. Commun. ACM 46(12), 300–307 (2003)

    Article  Google Scholar 

  3. Wang, Y., Wang, X., Ran, Y., Michalski, R., Jia, T.: CasSeqGCN: combining network structure and temporal sequence to predict information cascades. Exp. Syst. Appl. 206(C) (2022). https://doi.org/10.1016/j.eswa.2022.117693

  4. Wu, Q., Gao, Y., Gao, X., Weng, P., Chen, G.: Dual sequential prediction models linking sequential recommendation and information dissemination. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 447–457 (2019)

    Google Scholar 

  5. Wang, S., Zhou, L., Kong, B.: Information cascade prediction based on T-DeepHawkes model. IOP Conf. Ser. Mater. Sci. Eng. 715(1), 012042 (2020). https://doi.org/10.1088/1757-899X/715/1/012042

    Article  Google Scholar 

  6. Yang, C., Sun, M., Liu, H., Han, S., Liu, Z., Luan, H.: Neural diffusion model for microscopic cascade study. IEEE Trans. Knowl. Data Eng. 33(3), 1128–1139 (2019)

    Google Scholar 

  7. Yang, C., Tang, J., Sun, M., Cui, G., Liu, Z.: Multi-scale information diffusion prediction with reinforced recurrent networks. In: IJCAI, pp. 4033–4039 (2019)

    Google Scholar 

  8. Cao, Q., Shen, H., Cen, K., Ouyang, W., Cheng, X.: DeepHawkes: bridging the gap between prediction and understanding of information cascades. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1149–1158 (2017)

    Google Scholar 

  9. Jenders, M., Kasneci, G., Naumann, F.: Analyzing and predicting viral tweets. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 657–664 (2013)

    Google Scholar 

  10. Kong, S., Mei, Q., Feng, L., Ye, F., Zhao, Z.: Predicting bursts and popularity of hashtags in real-time. In: Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR 2014, pp. 927–930. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2600428.2609476

  11. Bo, H., McConville, R., Hong, J., Liu, W.: Social influence prediction with train and test time augmentation for graph neural networks. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)

    Google Scholar 

  12. Yuan, C., Li, J., Zhou, W., Lu, Y., Zhang, X., Hu, S.: DyHGCN: a dynamic heterogeneous graph convolutional network to learn users’ dynamic preferences for information diffusion prediction. arXiv arXiv:2006.05169 (2020). https://api.semanticscholar.org/CorpusID:219559005

  13. Nielsen, D.S., McConville, R.: MuMiN: a large-scale multilingual multimodal fact-checked misinformation social network dataset. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 3141–3153 (2022)

    Google Scholar 

  14. Zhou, F., Xu, X., Trajcevski, G., Zhang, K.: A survey of information cascade analysis: models, predictions, and recent advances. ACM Comput. Surv. 54(2), 1–36 (2021). https://doi.org/10.1145/3433000

    Article  Google Scholar 

  15. Petrovic, S., Osborne, M., Lavrenko, V.: RT to win! Predicting message propagation in Twitter. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 5, no. 1, pp. 586–589 (2011)

    Google Scholar 

  16. Kamath, K.Y., Caverlee, J.: Spatio-temporal meme prediction: learning what hashtags will be popular where. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management (2013). https://api.semanticscholar.org/CorpusID:2062983

  17. Wang, D., Song, C., Barabási, A.-L.: Quantifying long-term scientific impact. Science 342(6154), 127–132 (2013)

    Article  Google Scholar 

  18. Hassan Zadeh, A., Sharda, R.: Modeling brand post popularity dynamics in online social networks. Decis. Support Syst. 65, 59–68 (2014). https://www.sciencedirect.com/science/article/pii/S0167923614001432

  19. Kobayashi, R., Lambiotte, R.: TiDeH: time-dependent Hawkes process for predicting retweet dynamics. In: Tenth International AAAI Conference on Web and Social Media (2016)

    Google Scholar 

  20. Li, C., Ma, J., Guo, X., Mei, Q.: DeepCas: an end-to-end predictor of information cascades. In: Proceedings of the 26th International Conference on World Wide Web, WWW 2017, pp. 577–586. International World Wide Web Conferences Steering Committee, CHE, Republic and Canton of Geneva (2017). https://doi.org/10.1145/3038912.3052643

  21. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  22. Chen, X., Zhou, F., Zhang, K., Trajcevski, G., Zhong, T., Zhang, F.: Information diffusion prediction via recurrent cascades convolution. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 770–781 (2019)

    Google Scholar 

  23. Wu, Y., Huang, H., Jin, H.: Information diffusion prediction with personalized graph neural networks. In: Li, G., Shen, H.T., Yuan, Y., Wang, X., Liu, H., Zhao, X. (eds.) KSEM 2020, Part II. LNCS (LNAI), vol. 12275, pp. 376–387. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55393-7_34

    Chapter  Google Scholar 

  24. Chen, X., Zhang, F., Zhou, F., Bonsangue, M.: Multi-scale graph capsule with influence attention for information cascades prediction. Int. J. Intell. Syst. 37(3), 2584–2611 (2022)

    Article  Google Scholar 

  25. Cao, Q., Shen, H., Gao, J., Wei, B, Cheng, X.: Popularity prediction on social platforms with coupled graph neural networks. In: Proceedings of the 13th International Conference on Web Search and Data Mining (2019). https://api.semanticscholar.org/CorpusID:208309901

  26. Huang, Z., Wang, Z., Zhang, R.: Cascade2vec: learning dynamic cascade representation by recurrent graph neural networks. IEEE Access 7, 144 800–144 812 (2019)

    Google Scholar 

  27. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  28. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  29. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  30. Bozinovski, S.: Reminder of the first paper on transfer learning in neural networks, 1976. Informatica 44(3) (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwen Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Y., McAreavey, K., Liu, W., McConville, R. (2024). A Comparative Analysis of Information Cascade Prediction Using Dynamic Heterogeneous and Homogeneous Graphs. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1144. Springer, Cham. https://doi.org/10.1007/978-3-031-53503-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53503-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53502-4

  • Online ISBN: 978-3-031-53503-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics