AutoML Approach for Decision Making in a Manufacturing Context | SpringerLink
Skip to main content

AutoML Approach for Decision Making in a Manufacturing Context

  • Conference paper
  • First Online:
Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future (SOHOMA 2023)

Abstract

Numerous human- and/or machine actors interact in the value chain during a product’s life cycle from its design to its final removal. This implies that operational usage data of the product (seen as a system) must be made available to all concerned stakeholders through efficient informational chains. To face large amounts of data, Artificial Intelligence (AI) and especially Machine Learning techniques aim to assist stakeholders in their decision-making process. However, the latter are not necessarily experts in Machine Learning technics and have to rely on ML experts and data scientists to provide analytical assistance. To overcome this problem, a new approach called Automated Machine Learning (AutoML) has recently been proposed to save time and increase efficiency by automating traditional Machine Learning steps. This paper aims to provide decision assistance models for stakeholders, based on AutoML techniques. The proposed model is illustrated by a use case in the context of the automotive industry and especially in the design phase of cars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 25167
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 31459
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 31459
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wuest, T., Weimer, D., Irgens, C., Thoben, K.D.: Machine learning in manufacturing: advantages, challenges, and applications, vol. 4, no. 1, pp. 23–45 (2016). http://mc.manuscriptcentral.com/tpmr, https://doi.org/10.1080/21693277.2016.1192517

  2. Mallouk, I., Sallez, Y., El Majd, B.A.: Machine learning approach for predictive maintenance of transport systems, pp. 96–100 (2021). https://doi.org/10.1109/tst52996.2021.00023

  3. Amruthnath, N., Gupta, T.: Fault class prediction in unsupervised learning using model-based clustering approach. In: Proceedings of the ICICT 2018 International Conference on Information and Computer Technologies, pp. 5–12 (2018). https://doi.org/10.1109/INFOCT.2018.8356831

  4. Kantasa-ard, A., Nouiri, M., Bekrar, A., Ait el cadi, A., Sallez, Y.: Machine learning for demand forecasting in the physical internet: a case study of agricultural products in Thailand. Int. J. Prod. Res. 1–25 (2020). https://doi.org/10.1080/00207543.2020.1844332

  5. Hutter, F., et al.: Automated Machine Learning: Methods, Systems, Challenges. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-05318-5

    Book  Google Scholar 

  6. Stiglic, G., Kocbek, S., Pernek, I., Kokol, P.: Comprehensive decision tree models in bioinformatics. PLoS ONE 7(3), e33812 (2012)

    Article  Google Scholar 

  7. Song, I.-Y., Zhu, Y.: Big data and data science: opportunities and challenges of iSchools. J. Data Inf. Sci. 2(3), 1–18 (2017). https://doi.org/10.1515/JDIS-2017-0011

    Article  Google Scholar 

  8. Thornton, C., Hutter, F., Leyton-Brown, K.: Auto-WEKA: combined selection and hyper-parameter optimization of classification algorithms. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Part F1288, pp. 847–855 (2013)

    Google Scholar 

  9. Komer, B., Bergstra, J., Eliasmith, C.: Hyperopt-sklearn: automatic hyperparameter configuration for scikit-learn. In: Proceedings of the 13th Python Science Conference, no. Scipy, pp. 32–37 (2014)

    Google Scholar 

  10. Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., Hutter, F.: Auto-sklearn 2.0: hands-free AutoML via meta-learning. J. Mach. Learn. Res. 23, 1–18 (20220. http://arxiv.org/abs/2007.04074

  11. Olson, R.S., Urbanowicz, R.J., Andrews, P.C., Lavender, N.A., Kidd, L.C., Moore, J.H.: Automating biomedical data science through tree-based pipeline optimization. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 123–137. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31204-0_9

    Chapter  Google Scholar 

  12. Jin, H., Song, Q., Hu, X.: Auto-keras: an efficient neural architecture search system. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, no. March, pp. 1946–1956 (2019)

    Google Scholar 

  13. Shabtai, A., et al.: A Survey of Data Leakage Detection and Prevention Solutions, no. 9781461420521. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-2053-8

  14. Jiao, Y., Du, P.: Performance measures in evaluating machine learning based bioinformatics predictors for classifications. Quant. Biol. 4(4), 320–330 (2016)

    Article  Google Scholar 

  15. Garouani, M., Ahmad, A., Bouneffa, M., Lewandowski, A.: Towards big industrial data mining through explainable automated machine learning. Int. J. Adv. Manuf. Technol. 120(1–2), 1169–1188 (2022). https://doi.org/10.1007/S00170-022-08761-9/FIGURES/12

    Article  Google Scholar 

  16. Krauß, J., Pacheco, B.M., Zang, H.M., Schmitt, R.H.: Automated machine learning for predictive quality in production. Procedia CIRP 93, 443–448 (2020)

    Article  Google Scholar 

  17. Martin Salvador, M., Budka, M., Gabrys, B.: Adapting multicomponent predictive systems using hybrid adaptation strategies with auto-WEKA in process industry. In: AutoML at ICML 2016, vol. 64, pp. 48–57 (2016)

    Google Scholar 

  18. Jackson, I., Velazquez-Martinez, J.C.: Automl approach to classification of candidate solutions for simulation models of logistic systems. In: Proceedings of Winter Simulation Conferece, vol. 2021-December (2021). https://doi.org/10.1109/WSC52266.2021.9715416

  19. Denkena, B., Dittrich, M.-A., Stürenburg, L.: Using AutoML to optimize shape error prediction in milling processes. SSRN Electron. J. (2020). https://doi.org/10.2139/SSRN.3724234

  20. Sun, Y., Song, Q., Gui, X., Ma, F., Wang, T.: AutoML in The Wild: Obstacles, Workarounds, and Expectations, vol. 1, no. 1. Association for Computing Machinery (2023)

    Google Scholar 

  21. Targowski, A.: From data to wisdom. Dialogue Univ. 15(5), 55–71 (2005). https://doi.org/10.5840/du2005155/629

    Article  Google Scholar 

  22. Vabalas, A., Gowen, E., Poliakoff, E., Casson, A.J.: Machine learning algorithm validation with a limited sample size. PLoS ONE 14(11), e0224365 (2019)

    Article  Google Scholar 

  23. Bohanec, M., Rajkovič, V.: Knowledge acquisition and explanation for multi-attribute decision making. In: 8th International Workshop on Expert Systems and Their Applications (1988)

    Google Scholar 

  24. Wang, C., Wu, Q., Weimer, M., Zhu, E.: FLAML: a fast and lightweight AutoML library. Proc. Mach. Learn. Syst. (2019). https://doi.org/10.48550/arxiv.1911.04706

  25. Wu, Q., Wang, C., Huang, S.: Frugal optimization for cost-related hyperparameters. In: 35th AAAI Conference on Artificial Intelligence, AAAI 2021, vol. 12A, pp. 10347–10354 (2021)

    Google Scholar 

  26. Hansen, K.: Assessment and validation of machine learning methods for predicting molecular atomization energies. J. Chem. Theory Comput. 9(8), 3404–3419 (2013)

    Article  Google Scholar 

  27. Nagarajah, T., Poravi, G.: A review on automated machine learning (AutoML) systems. In: 2019 IEEE 5th International Conference on Convergence in Technology, I2CT 2019 (2019)

    Google Scholar 

  28. Kilincer, I.F., Ertam, F., Sengur, A.: A comprehensive intrusion detection framework using boosting algorithms. Comput. Electr. Eng. 100, 107869 (2022)

    Article  Google Scholar 

  29. Baykal, A.: Performance analysis of classification algorithms of several data mining softwares. Middle East J. Sci. 4(2), 104–112 (2018)

    Article  Google Scholar 

  30. Rehman, Z., et al.: Performance evaluation of MLPNN and NB: a comparative study on car evaluation dataset. IJCSNS Int. J. Comput. Sci. Netw. Secur. 18(9), 144 (2018). https://www.researchgate.net/publication/332465875

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issam Mallouk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mallouk, I., Sallez, Y., El Majd, B.A. (2024). AutoML Approach for Decision Making in a Manufacturing Context. In: Borangiu, T., Trentesaux, D., Leitão, P., Berrah, L., Jimenez, JF. (eds) Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. SOHOMA 2023. Studies in Computational Intelligence, vol 1136. Springer, Cham. https://doi.org/10.1007/978-3-031-53445-4_13

Download citation

Publish with us

Policies and ethics