MRHF: Multi-stage Retrieval and Hierarchical Fusion for Textbook Question Answering | SpringerLink
Skip to main content

MRHF: Multi-stage Retrieval and Hierarchical Fusion for Textbook Question Answering

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14555))

Included in the following conference series:

Abstract

Textbook question answering is challenging as it aims to automatically answer various questions on textbook lessons with long text and complex diagrams, requiring reasoning across modalities. In this work, we propose MRHF, a novel framework that incorporates dense passage re-ranking and the mixture-of-experts architecture for TQA. MRHF proposes a novel query augmentation method for diagram questions and then adopts multi-stage dense passage re-ranking with large pretrained retrievers for retrieving paragraph-level contexts. Then it employs a unified question solver to process different types of text questions. Considering the rich blobs and relation knowledge contained in diagrams, we propose to perform multimodal feature fusion over the retrieved context and the heterogeneous diagram features. Furthermore, we introduce the mixture-of-experts architecture to solve the diagram questions to learn from both the rich text context and the complex diagrams and mitigate the possible negative effects between features of the two modalities. We test the framework on the CK12-TQA benchmark dataset, and the results show that MRHF outperforms the state-of-the-art results in all types of questions. The ablation and case study also demonstrates the effectiveness of each component of the framework.

P. Zhu, Z. Wang—Equal Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  2. Fedus, W., Dean, J., Zoph, B.: A review of sparse expert models in deep learning. arXiv preprint arXiv:2209.01667 (2022)

  3. Gómez-Pérez, J.M., Ortega, R.: ISAAQ-mastering textbook questions with pre-trained transformers and bottom-up and top-down attention. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 5469–5479 (2020)

    Google Scholar 

  4. He, J., Fu, X., Long, Z., Wang, S., Liang, C., Lin, H.: Textbook question answering with multi-type question learning and contextualized diagram representation. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds.) ICANN 2021. LNCS, vol. 12894, pp. 86–98. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86380-7_8

    Chapter  Google Scholar 

  5. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)

    Google Scholar 

  6. Honnibal, M., Montani, I.: spaCy 2: natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing (2017). to appear

    Google Scholar 

  7. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comput. 3(1), 79–87 (1991)

    Article  Google Scholar 

  8. Jiang, Y., et al.: Improving machine reading comprehension with single-choice decision and transfer learning. arXiv preprint arXiv:2011.03292 (2020)

  9. Jocher, G., et al.: ultralytics/yolov5: v4.0 - nn.SiLU() activations, Weights & Biases logging, PyTorch Hub integration. Zenodo, January 2021. https://doi.org/10.5281/zenodo.4418161

  10. Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm. Neural Comput. 6(2), 181–214 (1994)

    Article  Google Scholar 

  11. Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering. arXiv preprint arXiv:2004.04906 (2020)

  12. Kembhavi, A., Salvato, M., Kolve, E., Seo, M., Hajishirzi, H., Farhadi, A.: A diagram is worth a dozen images. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 235–251. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_15

    Chapter  Google Scholar 

  13. Kembhavi, A., Seo, M., Schwenk, D., Choi, J., Farhadi, A., Hajishirzi, H.: Are you smarter than a sixth grader? Textbook question answering for multimodal machine comprehension. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4999–5007 (2017)

    Google Scholar 

  14. Kim, D., Kim, S., Kwak, N.: Textbook question answering with multi-modal context graph understanding and self-supervised open-set comprehension. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3568–3584 (2019)

    Google Scholar 

  15. Lai, G., Xie, Q., Liu, H., Yang, Y., Hovy, E.: RACE: large-scale reading comprehension dataset from examinations. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 785–794 (2017)

    Google Scholar 

  16. Li, J., Su, H., Zhu, J., Wang, S., Zhang, B.: Textbook question answering under instructor guidance with memory networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3655–3663 (2018)

    Google Scholar 

  17. Li, J., Su, H., Zhu, J., Zhang, B.: Essay-anchor attentive multi-modal bilinear pooling for textbook question answering. In: 2018 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2018)

    Google Scholar 

  18. Liu, Y., et al.: Roberta: a robustly optimized Bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  19. Ma, J., Chai, Q., Liu, J., Yin, Q., Wang, P., Zheng, Q.: XTQA: span-level explanations for textbook question answering (2023)

    Google Scholar 

  20. Ma, J., Liu, J., Wang, Y., Li, J., Liu, T.: Relation-aware fine-grained reasoning network for textbook question answering. IEEE Transactions on Neural Networks and Learning Systems (2021)

    Google Scholar 

  21. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016)

  22. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-Networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, November 2019

    Google Scholar 

  23. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-Networks. arXiv preprint arXiv:1908.10084 (2019)

  24. Riquelme, C., et al.: Scaling vision with sparse mixture of experts. Adv. Neural Inf. Process. Syst. 34, 8583–8595 (2021)

    Google Scholar 

  25. Robertson, S.E., Walker, S.: Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval. In: Croft, B.W., van Rijsbergen, C.J. (eds.) SIGIR ’94, pp. 232–241. Springer, London (1994). https://doi.org/10.1007/978-1-4471-2099-5_24

  26. Rose, S., Engel, D., Cramer, N., Cowley, W.: Automatic keyword extraction from individual documents. Text Min. Appl. Theory 1(1–20), 10–1002 (2010)

    Google Scholar 

  27. Song, K., Tan, X., Qin, T., Lu, J., Liu, T.Y.: MPNet: masked and permuted pre-training for language understanding. Adv. Neural Inf. Process. Syst. 33, 16857–16867 (2020)

    Google Scholar 

  28. Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., Zhou, M.: MINILM: deep self-attention distillation for task-agnostic compression of pre-trained transformers. Adv. Neural Inf. Process. Syst. 33, 5776–5788 (2020)

    Google Scholar 

  29. Xu, F., et al.: MoCA: incorporating domain pretraining and cross attention for textbook question answering. Pattern Recognit. 140, 109588 (2023)

    Article  Google Scholar 

  30. Zhao, Y., Ni, X., Ding, Y., Ke, Q.: Paragraph-level neural question generation with maxout pointer and gated self-attention networks. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 3901–3910 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peide Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, P., Wang, Z., Okumura, M., Yang, J. (2024). MRHF: Multi-stage Retrieval and Hierarchical Fusion for Textbook Question Answering. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14555. Springer, Cham. https://doi.org/10.1007/978-3-031-53308-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53308-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53307-5

  • Online ISBN: 978-3-031-53308-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics