MVD-NeRF: Resolving Shape-Radiance Ambiguity via Mitigating View Dependency | SpringerLink
Skip to main content

MVD-NeRF: Resolving Shape-Radiance Ambiguity via Mitigating View Dependency

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14555))

Included in the following conference series:

  • 762 Accesses

Abstract

We propose MVD-NeRF, a method to recover high-fidelity mesh from neural radiance fields(NeRFs). The phenomenon of shape radiance ambiguity, where the radiance of a point changes significantly when viewed from different angles, leads to incorrect geometry. We propose directed view appearance encoding to achieve the desired viewpoint invariance by optimizing the appearance embedding for each input image, enabling the network to learn the shared appearance representation of the entire image set. Moreover, we utilize skip connections and layer scale module in the network architecture to capture complex and multifaceted scene information. The introduction of layer scale module allows the shallow information of the network to be transmitted to the deep layer more accurately, maintaining the consistency of features. Extensive experiments demonstrate that, despite the inevitability of shape-radiance ambiguity, the proposed method can effectively minimize its impact on geometry which essentially mitigates the impact of view-dependent variations. The extracted geometry and textures can be deployed in any traditional graphics engine for downstream tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 24 (2009)

    Article  Google Scholar 

  2. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5470–5479 (2022)

    Google Scholar 

  3. Bi, S., et al.: Neural reflectance fields for appearance acquisition. arXiv preprint arXiv:2008.03824 (2020)

  4. Bojanowski, P., Joulin, A., Lopez-Paz, D., Szlam, A.: Optimizing the latent space of generative networks. arXiv preprint arXiv:1707.05776 (2017)

  5. Chen, Z., Funkhouser, T., Hedman, P., Tagliasacchi, A.: MobileNeRF: exploiting the polygon rasterization pipeline for efficient neural field rendering on mobile architectures. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16569–16578 (2023)

    Google Scholar 

  6. Dai, S., Cao, Y., Duan, P., Chen, X.: SRes-NeRF: improved neural radiance fields for realism and accuracy of specular reflections. In: International Conference on Multimedia Modeling, pp. 306–317. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-27077-2_24

  7. Darmon, F., Bascle, B., Devaux, J.C., Monasse, P., Aubry, M.: Improving neural implicit surfaces geometry with patch warping. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6260–6269 (2022)

    Google Scholar 

  8. Fu, Q., Xu, Q., Ong, Y.S., Tao, W.: Geo-Neus: geometry-consistent neural implicit surfaces learning for multi-view reconstruction. Adv. Neural. Inf. Process. Syst. 35, 3403–3416 (2022)

    Google Scholar 

  9. Furukawa, Y., Ponce, J.: Accurate, Dense, and Robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1362–1376 (2009)

    Article  Google Scholar 

  10. Jacot, A., Gabriel, F., Hongler, C.: Neural tangent kernel: convergence and generalization in neural networks. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  11. Jiang, Y., Ji, D., Han, Z., Zwicker, M.: SDFDiff: differentiable rendering of signed distance fields for 3D shape optimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1251–1261 (2020)

    Google Scholar 

  12. Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: BARF: bundle-adjusting neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5741–5751 (2021)

    Google Scholar 

  13. Liu, S., Zhang, Y., Peng, S., Shi, B., Pollefeys, M., Cui, Z.: DIST: rendering deep implicit signed distance function with differentiable sphere tracing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2019–2028 (2020)

    Google Scholar 

  14. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: learning dynamic renderable volumes from images. arXiv preprint arXiv:1906.07751 (2019)

  15. Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duckworth, D.: Nerf in the wild: neural radiance fields for unconstrained photo collections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7210–7219 (2021)

    Google Scholar 

  16. Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. (TOG) 38(4), 1–14 (2019)

    Article  Google Scholar 

  17. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  18. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (ToG) 41(4), 1–15 (2022)

    Article  Google Scholar 

  19. Munkberg, J., et al.: Extracting triangular 3D models, materials, and lighting from images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8280–8290 (2022)

    Google Scholar 

  20. Niemeyer, M., Barron, J.T., Mildenhall, B., Sajjadi, M.S., Geiger, A., Radwan, N.: RegNeRF: regularizing neural radiance fields for view synthesis from sparse inputs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5480–5490 (2022)

    Google Scholar 

  21. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: learning implicit 3D representations without 3D supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3504–3515 (2020)

    Google Scholar 

  22. Rebain, D., Jiang, W., Yazdani, S., Li, K., Yi, K.M., Tagliasacchi, A.: DeRF: decomposed radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14153–14161 (2021)

    Google Scholar 

  23. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: PIFu: pixel-aligned implicit function for high-resolution clothed human digitization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2304–2314 (2019)

    Google Scholar 

  24. Saito, S., Simon, T., Saragih, J., Joo, H.: PIFuHD: multi-level pixel-aligned implicit function for high-resolution 3D human digitization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 84–93 (2020)

    Google Scholar 

  25. Schönberger, J.L., Zheng, E., Frahm, J.-M., Pollefeys, M.: Pixelwise view selection for unstructured multi-view stereo. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 501–518. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_31

    Chapter  Google Scholar 

  26. Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: continuous 3D-structure-aware neural scene representations. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  27. Tang, J., et al.: Delicate textured mesh recovery from nerf via adaptive surface refinement. arXiv preprint arXiv:2303.02091 (2023)

  28. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NeuS: learning neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv preprint arXiv:2106.10689 (2021)

  29. We, L.: Marching Cubes: a high resolution 3D surface construction algorithm. Comput. Graph. 21, 163–169 (1987)

    Article  Google Scholar 

  30. Wei, Y., Liu, S., Rao, Y., Zhao, W., Lu, J., Zhou, J.: NerfingMVS: guided optimization of neural radiance fields for indoor multi-view stereo. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5610–5619 (2021)

    Google Scholar 

  31. Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit surfaces. Adv. Neural. Inf. Process. Syst. 34, 4805–4815 (2021)

    Google Scholar 

  32. Yariv, L., et al.: Multiview neural surface reconstruction by disentangling geometry and appearance. Adv. Neural. Inf. Process. Syst. 33, 2492–2502 (2020)

    Google Scholar 

  33. Zhang, K., Riegler, G., Snavely, N., Koltun, V.: NeRF++: analyzing and improving neural radiance fields. arXiv preprint arXiv:2010.07492 (2020)

  34. Zhu, B., Yang, Y., Wang, X., Zheng, Y., Guibas, L.: VDN-NeRF: resolving shape-radiance ambiguity via view-dependence normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 35–45 (2023)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Zhengzhou University, the Zhengzhou City Collaborative Innovation Major Project, and the GPU support provided by the 3DCV lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, Y., Wang, B., Li, Z., Li, J. (2024). MVD-NeRF: Resolving Shape-Radiance Ambiguity via Mitigating View Dependency. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14555. Springer, Cham. https://doi.org/10.1007/978-3-031-53308-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53308-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53307-5

  • Online ISBN: 978-3-031-53308-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics