Abstract
Estimating the overall structure of a point cloud from a partial 3D point cloud input is a crucial task in computer vision. However, existing point cloud completion methods often overlook object detail information and the local correlation within the incomplete point cloud. To address this challenge, we propose an enhanced point cloud completion approach called TNT-Net, which leverages a transformer in transformer architecture for accurate and refined point cloud completion. TNT-Net incorporates a local feature extraction module to capture long-range correlations within the input point cloud. Moreover, we introduce stacked feature extractors to simplify subsequent calculations and gather more comprehensive feature information on the spatial distribution of the point cloud. Additionally, we present an efficient method that integrates the kNN-transformer into the existing point transformer to address the deficiency of local detail information in previous works. This method enables TNT-Net to capture fine-grained object details and local correlations more effectively. Extensive experiments conducted on synthetic datasets PCN, ShapeNet55/34, and real-world dataset KITTI demonstrate the superior quantitative and qualitative performance of TNT-Net compared to state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Charles, R.Q., Su, H., Kaichun, M., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 77–85 (2017). https://doi.org/10.1109/CVPR.2017.16
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, vol. 30, pp. 5099–5108 (2017)
Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-Mache approach to learning 3D surface generation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 216–224 (2018). https://doi.org/10.1109/CVPR.2018.00030
Yang, Y., Feng, C., Shen, Y., Tian, D.: FoldingNet: point cloud auto-encoder via deep grid deformation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 206–215 (2018). https://doi.org/10.1109/CVPR.2018.00029
Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: PCN: point completion network. In: 2018 International Conference on 3D Vision (3DV), pp. 728–737 (2018). https://doi.org/10.1109/3DV.2018.00088
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30, pp. 5998–6008 (2017)
Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. In: Proceedings of the International Conference on Learning Representations (2021)
Yu, X., Rao, Y., Wang, Z., Liu, Z., Lu, J., Zhou, J.: PoinTr: diverse point cloud completion with geometry-aware transformers. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12478–12487 (2021). https://doi.org/10.1109/ICCV48922.2021.01227
Xiang, P., et al.: SnowflakeNet: point cloud completion by snowflake point deconvolution with skip-transformer. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5479–5489 (2021). https://doi.org/10.1109/ICCV48922.2021.00545
Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., Wang, Y.: Transformer in transformer. In: Advances in Neural Information Processing Systems, vol. 34, pp. 15908–15919 (2021)
Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38
Girdhar, R., Fouhey, D.F., Rodriguez, M., Gupta, A.: Learning a predictable and generative vector representation for objects. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 484–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_29
Wang, P., Liu, Y., Guo, Y., Sun, C., Tong, X.: O-CNN: octree-based convolutional neural networks for 3D shape analysis. ACM Trans. Graph. 36(4), 72:1–72:11 (2017)
Maturana, D., Scherer, S.: VoxNet: A 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928 (2015). https://doi.org/10.1109/IROS.2015.7353481
Dai, A., Qi, C.R., Nießner, M.: Shape completion using 3D-encoder-predictor CNNs and shape synthesis. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6545–6554 (2017). https://doi.org/10.1109/CVPR.2017.693
Han, X., Li, Z., Huang, H., Kalogerakis, E., Yu, Y.: High-resolution shape completion using deep neural networks for global structure and local geometry inference. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 85–93 (2017). https://doi.org/10.1109/ICCV.2017.19
Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. 38(5), 146:1–146:12 (2019)
Tchapmi, L.P., Kosaraju, V., Rezatofighi, H., Reid, I., Savarese, S.: TopNet: structural point cloud decoder. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 383–392 (2019). https://doi.org/10.1109/CVPR.2019.00047
Huang, Z., Yu, Y., Xu, J., Ni, F., Le, X.: PF-Net: point fractal network for 3D point cloud completion. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7659–7667 (2020). https://doi.org/10.1109/CVPR42600.2020.00768
Wen, X., et al.: PMP-Net: point cloud completion by learning multi-step point moving paths. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7439–7448 (2021). https://doi.org/10.1109/CVPR46437.2021.00736
Zhou, H., et al.: SeedFormer: patch seeds based point cloud completion with upsample transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13663, pp. 416–432. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20062-5_24
Zhao, H., Jiang, L., Jia, J., Torr, P.H.S., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16239–16248 (2021)
Fan, H., Su, H., Guibas, L.: A point set generation network for 3D object reconstruction from a single image. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2463–2471 (2017). https://doi.org/10.1109/CVPR.2017.264
Xie, H., Yao, H., Zhou, S., Mao, J., Zhang, S., Sun, W.: GRNet: gridding residual network for dense point cloud completion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 365–381. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_21
Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robotics Res. 32(11), 1231–1237 (2013)
Acknowledgement
This work was sponsored by Natural Science Foundation of Xinjiang Uygur Autonomous Region under Grant 2022D01C690.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, X., Zhang, J., Li, J., Chen, M. (2024). TNT-Net: Point Cloud Completion by Transformer in Transformer. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14555. Springer, Cham. https://doi.org/10.1007/978-3-031-53308-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-53308-2_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53307-5
Online ISBN: 978-3-031-53308-2
eBook Packages: Computer ScienceComputer Science (R0)