Abstract
Recommendation systems have played a crucial role in assisting users with decision-making across various domains. In nutrition, these systems can provide valuable assistance by offering alternatives to inflexible food plans that often result in abandonment due to personal food preferences or the temporary unavailability of certain ingredients. Moreover, they can aid caregivers in selecting the most suitable food options for dependent individuals based on their specific daily goals. In this article, we develop a data-driven model using a multilayer perceptron (MLP) network to assist individuals in making informed meal choices that align with their preferences and daily goals. Our study focuses on predicting complete meals rather than solely on predicting individual food items since food choices are often influenced by specific combinations of ingredients that work harmoniously together. Based on our evaluation of a comprehensive dataset, the results of our study demonstrate that the model achieves a prediction accuracy of over 60% for an individual complete meal.
National Funds fund this work through the FCT—Foundation for Science and Technology, I.P., within the scope of the project Ref. UIDB/05583/2020. Furthermore, we thank the Research Centre in Digital Services (CISeD), under project Ref. PIDI/CISeD/2022/009, and the Polytechnic of Viseu for their support.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alian, S., Li, J., Pandey, V.: A personalized recommendation system to support diabetes self-management for American Indians. IEEE Access 6, 73041–73051 (2018). https://doi.org/10.1109/access.2018.2882138
Banerjee, A., Noor, A., Siddiqua, N., Uddin, M.N.: Food recommendation using machine learning for chronic kidney disease patients. In: 2019 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–5 (2019). https://doi.org/10.1109/iccci.2019.8821871
Biau, G.: Analysis of a random forests model. J. Mach. Learn. Res. 13(1), 1063–1095 (2012)
Chen, H.C., Chen, A.L.: A music recommendation system based on music data grouping and user interests. In: Proceedings of the Tenth International Conference on Information and Knowledge Management, pp. 231–238 (2001)
Gao, X., Feng, F., Huang, H., Mao, X.L., Lan, T., Chi, Z.: Food recommendation with graph convolutional network. Inf. Sci. 584, 170–183 (2022). https://doi.org/10.1016/j.ins.2021.10.040
Ghongane, H.: MyfitnessPal Dataset. https://www.kaggle.com/datasets/zvikinozadze/myfitnesspal-dataset/discussion/194277
Herforth, A., Arimond, M., Álvarez-Sánchez, C., Coates, J., Christianson, K., Muehlhoff, E.: A global review of food-based dietary guidelines. Adv. Nutr. 10(4), 590–605 (2019)
Mansoori, S., Liberatore, C., Ramirez, A., Chai, S.: Increased sodium consumption is associated with abdominal obesity in older adults. Curr. Dev. Nutr. 5(Suppl._2), 1230 (2021). https://doi.org/10.1093/cdn/nzab055_040
Noriega, L.: Multilayer perceptron tutorial. School of Computing. Staffordshire University, vol. 4, p. 5 (2005)
Oh, S.W., Koo, H.S., Han, K.H., Han, S.Y., Chin, H.J.: Associations of sodium intake with obesity, metabolic disorder, and albuminuria according to age. PLoS ONE 12(12), e0188770 (2017)
Oh, Y., Choi, A., Woo, W.: u-BabSang: a context-aware food recommendation system. J. Supercomput. 54(1), 61–81 (2010). https://doi.org/10.1007/s11227-009-0314-5
Phanich, M., Pholkul, P., Phimoltares, S.: Food recommendation system using clustering analysis for diabetic patients. In: 2010 International Conference on Information Science and Applications, pp. 1–8 (2010). https://doi.org/10.1109/icisa.2010.5480416
Potdar, K., Pardawala, T.S., Pai, C.D.: A comparative study of categorical variable encoding techniques for neural network classifiers. Int. J. Comput. Appl. 175(4), 7–9 (2017)
Rostami, M., Oussalah, M., Farrahi, V.: A novel time-aware food recommender-system based on deep learning and graph clustering. IEEE Access 10, 52508–52524 (2022). https://doi.org/10.1109/access.2022.3175317
Schedl, M.: Deep learning in music recommendation systems. Front. Appl. Math. Stat. 44 (2019)
Song, Y., Dixon, S., Pearce, M.: A survey of music recommendation systems and future perspectives. In: 9th International Symposium on Computer Music Modeling and Retrieval, vol. 4, pp. 395–410. Citeseer (2012)
Zhang, J., Li, M., Liu, W., Lauria, S., Liu, X.: Many-objective optimization meets recommendation systems: A food recommendation scenario. Neurocomputing 503, 109–117 (2022). https://doi.org/10.1016/j.neucom.2022.06.081
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Cunha, C.A.S., Cardoso, T.R., Duarte, R.P. (2024). Meal Suggestions for Caregivers and Indecisive Individuals Without a Set Food Plan. In: Coelho, P.J., Pires, I.M., Lopes, N.V. (eds) Smart Objects and Technologies for Social Good. GOODTECHS 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 556. Springer, Cham. https://doi.org/10.1007/978-3-031-52524-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-52524-7_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-52523-0
Online ISBN: 978-3-031-52524-7
eBook Packages: Computer ScienceComputer Science (R0)