Decoding Deception: Understanding Human Discrimination Ability in Differentiating Authentic Faces from Deepfake Deceits | SpringerLink
Skip to main content

Decoding Deception: Understanding Human Discrimination Ability in Differentiating Authentic Faces from Deepfake Deceits

  • Conference paper
  • First Online:
Image Analysis and Processing - ICIAP 2023 Workshops (ICIAP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14365))

Included in the following conference series:

Abstract

Advances in innovative digital technologies present a maturing challenge in differentiating between authentic and manipulated media. The evolution of automated technology has specifically exacerbated this issue, with the emergence of DeepFake content. The degree of sophistication poses potential risks and raise concerns across multiple domains including forensic imagery analysis, especially for Facial Image Comparison (FIC) practitioners. It remains unclear as to whether DeepFake videos can be accurately distinguished from their authentic counterparts, when analysed by domain experts. In response, we present our study where two participant cohorts (FIC practitioners and novice subjects) were shown eleven videos (6 authentic videos and 5 DeepFake videos) and asked to make judgments about the authenticity of the faces. The research findings indicate that when distinguishing between DeepFake and authentic faces, FIC practitioners perform at a similar level to the untrained, novice cohort. Though, statistically, the novice cohort outperformed the practitioners with an overall performance surpassing 70%, relative to the FIC practitioners. This research is still in its infancy stage, yet it is already making significant contributions to the field by facilitating a deeper understanding of how DeepFake content could potentially influence the domain of Forensic Image Identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Borges, L., Martins, B., Calado, P.: Combining similarity features and deep representation learning for stance detection in the context of checking fake news. J. Data Inf. Q. (JDIQ) 11(3), 1–26 (2019)

    Google Scholar 

  2. Dack, S.: Deep fakes, fake news, and what comes next. The Henry M. Jackson School of International Studies (2019)

    Google Scholar 

  3. Mansoor, N., Iliev, A.: Artificial intelligence in forensic science. In: Arai, K. (eds.) Advances in Information and Communication. FICC 2023. LNNS, vol. 652, pp. 155–163. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-28073-3_11

  4. Bitesize, B.B.C.: deepfakes: what are they and why would I make one? (2019)

    Google Scholar 

  5. Maras, M.H., Alexandrou, A.: Determining authenticity of video evidence in the age of artificial intelligence and in the wake of Deepfake videos. The International Journal of Evidence & Proof 23(3), 255–262 (2019)

    Article  Google Scholar 

  6. Cochran, J.D., Napshin, S.A.: Deepfakes: awareness, concerns, and platform accountability. Cyberpsychol. Behav. Soc. Netw. 24(3), 164–172 (2021)

    Article  Google Scholar 

  7. Hancock, J.T., Bailenson, J.N.: The social impact of deepfakes. Cyberpsychol. Behav. Soc. Netw. 24(3), 149–152 (2021)

    Article  Google Scholar 

  8. Jilani, S.K., Ugail, H., Logan, A.: Man vs machine: the ethnic verification of Pakistani and non-Pakistani mouth features. In: 41st ISTANBUL International Conference on “Advances in Science, Engineering & Technology” (IASET-22) (2022)

    Google Scholar 

  9. Adyapady, R.R., Annappa, B.: A comprehensive review of facial expression recognition techniques. Multimedia Syst. 29(1), 73–103 (2023)

    Article  Google Scholar 

  10. Fletcher, J.: Deepfakes, artificial intelligence, and some kind of dystopia: the new faces of online post-fact performance. Theatr. J. 70(4), 455–471 (2018)

    Article  Google Scholar 

  11. Narayan, K., Agarwal, H., Thakral, K., Mittal, S., Vatsa, M., Singh, R.: DF-Platter: multi-face heterogeneous Deepfake dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9739–9748 (2023)

    Google Scholar 

  12. Korshunov, P., Marcel, S.: Vulnerability assessment and detection of deepfake videos. In: 2019 International Conference on Biometrics (ICB), pp. 1–6. IEEE, June 2019

    Google Scholar 

  13. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  14. Brophy, E., Wang, Z., She, Q., Ward, T.: Generative adversarial networks in time series: a systematic literature review. ACM Comput. Surv. 55(10), 1–31 (2023)

    Article  Google Scholar 

  15. Battiato, S., Giudice. O., Paratore, A.: Multimedia forensics: discovering the history of multimedia contents. In: Proceedings of the 17th International Conference on Computer Systems and Technologies 2016, pp. 5–16 (2016)

    Google Scholar 

  16. Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Faceforensics: A large-scale video dataset for forgery detection in human faces (2018). arXiv preprint arXiv:1803.09179

  17. Vaccari, C., Chadwick, A.: Deepfakes and disinformation: exploring the impact of synthetic political video on deception, uncertainty, and trust in news. Soc. Media+ Soc. 6(1), 2056305120903408 (2020)

    Google Scholar 

  18. Groh, M., Epstein, Z., Firestone, C., Picard, R.: Deepfake detection by human crowds, machines, and machine-informed crowds. Proc. Natl. Acad. Sci. 119(1), e2110013119 (2022)

    Article  Google Scholar 

  19. Forgas, J.P., East, R.: On being happy and gullible: mood effects on skepticism and the detection of deception. J. Exp. Soc. Psychol. 44(5), 1362–1367 (2008)

    Article  Google Scholar 

  20. Brashier, N.M., Marsh, E.J.: Judging truth. Annu. Rev. Psychol. 71, 499–515 (2020)

    Article  Google Scholar 

  21. Clore, G., et al.: Affective feelings as feedback: some cognitive consequences. In: Martin, L.L., Clore, G.L. (eds.) Theories of Mood and Cognition: A User’s Handbook. pp. 27–62, L. Erlbaum, 2001

    Google Scholar 

  22. Sinha, P., Balas, B., Ostrovsky, Y., Russell, R.: Face recognition by humans: nineteen results all computer vision researchers should know about. Proc. IEEE 94(11), 1948–1962 (2006)

    Article  Google Scholar 

  23. Kanwisher, N., McDermott, J., Chun, M.M.: The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17(11), 4302–4311 (1997)

    Article  Google Scholar 

  24. Richler, J.J., Gauthier, I.: A meta-analysis and review of holistic face processing. Psychol. Bull. 140(5), 1281 (2014)

    Article  Google Scholar 

  25. Young, A.W., Burton, A.M.: Are we face experts? Trends Cogn. Sci. 22(2), 100–110 (2018)

    Article  Google Scholar 

  26. Bruce, V., Young, A.W.: Face perception. Psychology Press, Milton Park (2012)

    Google Scholar 

  27. Sabel, J., Johansson, F.: On the robustness and generalizability of face synthesis detection methods. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 962–971 (2021)

    Google Scholar 

  28. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  29. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

    Google Scholar 

  30. Chen, R., Chen, X., Ni, B., Ge, Y.: SimSwap: an efficient framework for high fidelity face swapping. In: ACM Multimedia (2020)

    Google Scholar 

  31. Bitouk, D., Kumar, N., Dhillon, S., Belhumeur, P., Nayar, S.K.: Face swapping: automatically replacing faces in photographs. ACM Trans. Graph. 27(3), 1–8 (2008)

    Article  Google Scholar 

  32. Pu, J., et al.: Deepfake videos in the wild: analysis and detection. In: Proceedings of the Web Conference 2021, pp. 981–992, April 2021

    Google Scholar 

  33. Gonzalez-Sosa, E., Fierrez, J., Vera-Rodriguez, R., Alonso-Fernandez, F.: Facial soft biometrics for recognition in the wild: recent works, annotation, and COTS evaluation. IEEE Trans. Inf. Forensics Secur. 13(8), 2001–2014 (2018)

    Article  Google Scholar 

  34. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. ACM Trans. Graph. (TOG) 38(4), 1–12 (2019)

    Article  Google Scholar 

  35. Soni, R., Arora, T.: A review of the techniques of images using GAN. In: Generative Adversarial Networks for Image-to-Image Translation, pp. 99–123 (2021)

    Google Scholar 

  36. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  37. Khalid, H., Tariq, S., Kim, M., Woo, S.S.: FakeAVCeleb: a novel audio-video multimodal deepfake dataset (2021). arXiv preprint arXiv:2108.05080

Download references

Acknowledgement

The authors would like to thank Bas Roosenstein, (Forensics Educational Institution, University of Applied Science, Amsterdam) and Dr. Reuben Morton (Open University, UK), for their valuable contributions to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelina Khalid Jilani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jilani, S.K., Geradts, Z., Abubakar, A. (2024). Decoding Deception: Understanding Human Discrimination Ability in Differentiating Authentic Faces from Deepfake Deceits. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing - ICIAP 2023 Workshops. ICIAP 2023. Lecture Notes in Computer Science, vol 14365. Springer, Cham. https://doi.org/10.1007/978-3-031-51023-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51023-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51022-9

  • Online ISBN: 978-3-031-51023-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics