Abstract
The prediction of city-wide taxi demand is used to proactively relocate idle taxis. Often neural network-based models are applied to tackle this problem, which is difficult due to its multivariate input and output space. As these models are composed of multiple layers, their predictions become opaque. This opaqueness makes debugging, optimising, and using the models difficult. To address this, we propose the usage of eXplainable AI (XAI) – feature importance methods.
In this paper, we build and train four city-wide taxi demand prediction models of commonly used neural network types on the New York City Yellow Taxi Trip data set. To explain their predictions, we select three existing XAI techniques – reduced Layerwise Relevance Propagation, Local Interpretable Model-agnostic Explanation, and Shapely Additive Explanations – and enable their usage on the specified problem. In addition, we propose a suite of five quantitative evaluation metrics suitable for explaining models that tackle regression problems with multivariate input and output space. Lastly, we compare the selected XAI techniques through the proposed evaluation metrics along four real-world scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alwosheel, A., Van Cranenburgh, S., Chorus, C.G.: Why did you predict that? Towards explainable artificial neural networks for travel demand analysis. Transp. Res. C Emerg. Technol. 128, 103143 (2021). https://doi.org/10.1016/j.trc.2021.103143
Anders, C.J., Neumann, D., Samek, W., Müller, K.R., Lapuschkin, S.: Software for Dataset-wide XAI: From Local Explanations to Global Insights with Zennit, CoRelAy, and ViRelAy, February 2023
Apley, D.W., Zhu, J.: Visualizing the effects of predictor variables in black box supervised learning models. J. R. Stat. Soc. Ser. B Stat Methodol. 82(4), 1059–1086 (2020). https://doi.org/10.1111/rssb.12377
Arias-Duart, A., Pares, F., Garcia-Gasulla, D., Gimenez-Abalos, V.: Focus! Rating XAI methods and finding biases. In: 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Padua, Italy, pp. 1–8. IEEE, July 2022. https://doi.org/10.1109/FUZZ-IEEE55066.2022.9882821
Arras, L., Osman, A., Samek, W.: CLEVR-XAI: a benchmark dataset for the ground truth evaluation of neural network explanations. Inf. Fusion 81, 14–40 (2022). https://doi.org/10.1016/j.inffus.2021.11.008
Aslam, N., et al.: Anomaly detection using explainable random forest for the prediction of undesirable events in oil wells. Appl. Comput. Intell. Soft Comput. 2022, 1–14 (2022). https://doi.org/10.1155/2022/1558381
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015). https://doi.org/10.1371/journal.pone.0130140
Biessmann, F., Refiano, D.: Quality Metrics for Transparent Machine Learning With and Without Humans In the Loop Are Not Correlated, July 2021
Carvalho, D.V., Pereira, E.M., Cardoso, J.S.: Machine learning interpretability: a survey on methods and metrics. Electronics 8(8), 832 (2019). https://doi.org/10.3390/electronics8080832
City of New York: TLC Trip Record Data - TLC (2023). https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
Goodman, B., Flaxman, S.: European Union regulations on algorithmic decision making and a “right to explanation.” AI Mag. 38(3), 50–57 (2017). https://doi.org/10.1609/aimag.v38i3.2741
Gunning, D., Aha, D.W.: DARPA’s explainable artificial intelligence program. AI Mag. 40(2), 44–58 (2019). https://doi.org/10.1609/aimag.v40i2.2850
Haliem, M., Mani, G., Aggarwal, V., Bhargava, B.: A distributed model-free ride-sharing approach for joint matching, pricing, and dispatching using deep reinforcement learning. IEEE Trans. Intell. Transp. Syst. 22(12), 7931–7942 (2021). https://doi.org/10.1109/TITS.2021.3096537
Hoepner, A.G.F., McMillan, D., Vivian, A., Wese Simen, C.: Significance, relevance and explainability in the machine learning age: an econometrics and financial data science perspective. Eur. J. Finance 27(1–2), 1–7 (2021). https://doi.org/10.1080/1351847X.2020.1847725
Hoffman, R.R., Mueller, S.T., Klein, G., Litman, J.: Metrics for Explainable AI: Challenges and Prospects, February 2019
Ishiguro, S., Kawasaki, S., Fukazawa, Y.: Taxi demand forecast using real-time population generated from cellular networks. In: Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, Singapore Singapore, pp. 1024–1032. ACM, October 2018. https://doi.org/10.1145/3267305.3274157
Jiang, S., Chen, W., Li, Z., Yu, H.: Short-term demand prediction method for online car-hailing services based on a least squares support vector machine. IEEE Access 7, 11882–11891 (2019). https://doi.org/10.1109/ACCESS.2019.2891825
Ke, J., Feng, S., Zhu, Z., Yang, H., Ye, J.: Joint predictions of multi-modal ride-hailing demands: a deep multi-task multi-graph learning-based approach. Transp. Res. C Emerg. Technol. 127, 103063 (2021). https://doi.org/10.1016/j.trc.2021.103063
Kim, J.Y., Cho, S.B.: Explainable prediction of electric energy demand using a deep autoencoder with interpretable latent space. Expert Syst. Appl. 186, 115842 (2021). https://doi.org/10.1016/j.eswa.2021.115842
Kontou, E., Garikapati, V., Hou, Y.: Reducing ridesourcing empty vehicle travel with future travel demand prediction. Transp. Res. C Emerg. Technol. 121, 102826 (2020). https://doi.org/10.1016/j.trc.2020.102826
Korth, M., Schleibaum, S., Müller, J.P., Ehlers, R.: On the influence of grid cell size on taxi demand prediction. In: Pires, I.M., Zdravevski, E., Garcia, N.C. (eds.) Smart Objects and Technologies for Social Goods. LNCIS, vol. 476, pp. 19–36. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-28813-5_2
Kraus, S., et al.: AI for explaining decisions in multi-agent environments. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, New York, NY, USA, 7–12 February 2020, pp. 13534–13538. AAAI Press (2020)
Lee, K., Eo, M., Jung, E., Yoon, Y., Rhee, W.: Short-term traffic prediction with deep neural networks: a survey. IEEE Access 9, 54739–54756 (2021). https://doi.org/10.1109/ACCESS.2021.3071174
Lin, Q., Xu, W., Chen, M., Lin, X.: A probabilistic approach for demand-aware ride-sharing optimization. In: Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing, Catania Italy, pp. 141–150. ACM, July 2019. https://doi.org/10.1145/3323679.3326512
Lin, Y.S., Lee, W.C., Celik, Z.B.: What do you see?: Evaluation of explainable artificial intelligence (XAI) interpretability through neural backdoors. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Virtual Event Singapore, pp. 1027–1035. ACM, August 2021. https://doi.org/10.1145/3447548.3467213
Linardatos, P., Papastefanopoulos, V., Kotsiantis, S.: Explainable AI: a review of machine learning interpretability methods. Entropy 23(1), 18 (2020). https://doi.org/10.3390/e23010018
Loff, E.: Explaining taxi demand prediction models based on feature importance. Bachelor’s thesis, Clausthal University of Technology (2023)
Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, Red Hook, NY, USA, pp. 4768–4777. Curran Associates Inc. (2017)
McDermid, J.A., Jia, Y., Porter, Z., Habli, I.: Artificial intelligence explainability: the technical and ethical dimensions. Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 379(2207), 20200363 (2021). https://doi.org/10.1098/rsta.2020.0363
Monje, L., Carrasco, R.A., Rosado, C., Sánchez-Montañés, M.: Deep learning XAI for bus passenger forecasting: a use case in Spain. Mathematics 10(9), 1428 (2022). https://doi.org/10.3390/math10091428
Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J., Damas, L.: Predicting taxi-passenger demand using streaming data. IEEE Trans. Intell. Transp. Syst. 14(3), 1393–1402 (2013). https://doi.org/10.1109/TITS.2013.2262376
O’Sullivan, S., et al.: Explainable artificial intelligence (XAI): closing the gap between image analysis and navigation in complex invasive diagnostic procedures. World J. Urol. 40(5), 1125–1134 (2022). https://doi.org/10.1007/s00345-022-03930-7
Pun, L., Zhao, P., Liu, X.: A multiple regression approach for traffic flow estimation. IEEE Access 7, 35998–36009 (2019). https://doi.org/10.1109/ACCESS.2019.2904645
Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?” Explaining the predictions of any classifier. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol. 13–17-August, pp. 1135–1144 (2016). https://doi.org/10.1145/2939672.2939778
Rosenfeld, A.: Better metrics for evaluating explainable artificial intelligence. In: Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2021, pp. 45–50. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2021)
Sajja, S., Aggarwal, N., Mukherjee, S., Manglik, K., Dwivedi, S., Raykar, V.: Explainable AI based interventions for pre-season decision making in fashion retail. In: Proceedings of the 3rd ACM India Joint International Conference on Data Science & Management of Data (8th ACM IKDD CODS & 26th COMAD), Bangalore India, pp. 281–289. ACM, January 2021. https://doi.org/10.1145/3430984.3430995
Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (XAI): toward medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 32(11), 4793–4813 (2021). https://doi.org/10.1109/TNNLS.2020.3027314
Tong, Y., et al.: The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax NS Canada, pp. 1653–1662. ACM, August 2017. https://doi.org/10.1145/3097983.3098018
Van Der Velden, B.H., Kuijf, H.J., Gilhuijs, K.G., Viergever, M.A.: Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med. Image Anal. 79, 102470 (2022). https://doi.org/10.1016/j.media.2022.102470
Wang, C., Hou, Y., Barth, M.: Data-driven multi-step demand prediction for ride-hailing services using convolutional neural network. In: Arai, K., Kapoor, S. (eds.) Advances in Computer Vision, vol. 944, pp. 11–22. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-17798-0_2
Xu, C., Li, C., Zhou, X.: Interpretable LSTM based on mixture attention mechanism for multi-step residential load forecasting. Electronics 11(14), 2189 (2022). https://doi.org/10.3390/electronics11142189
Xu, J., Rahmatizadeh, R., Boloni, L., Turgut, D.: A sequence learning model with recurrent neural networks for taxi demand prediction. In: 2017 IEEE 42nd Conference on Local Computer Networks (LCN), Singapore, pp. 261–268. IEEE, October 2017. https://doi.org/10.1109/LCN.2017.31
Xu, Y., Li, D.: Incorporating graph attention and recurrent architectures for city-wide taxi demand prediction. ISPRS Int. J. Geo Inf. 8(9), 414 (2019). https://doi.org/10.3390/ijgi8090414
Ye, J., Sun, L., Du, B., Fu, Y., Xiong, H.: Coupled layer-wise graph convolution for transportation demand prediction. Association for the Advancement of Artificial Intelligence, December 2020
Yousif, Y.M., Müller, J.P.: Generating explanatory saliency maps for mixed traffic flow using a behaviour cloning model. In: Lorig, F., Norling, E. (eds.) Multi-Agent-Based Simulation XXIII, vol. 13743, pp. 107–120. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-22947-3_9
Zhang, C., Zhu, F., Wang, X., Sun, L., Tang, H., Lv, Y.: Taxi demand prediction using parallel multi-task learning model. IEEE Trans. Intell. Transp. Syst. 23(2), 794–803 (2022). https://doi.org/10.1109/TITS.2020.3015542
Zhou, J., Gandomi, A.H., Chen, F., Holzinger, A.: Evaluating the quality of machine learning explanations: a survey on methods and metrics. Electronics 10(5), 593 (2021). https://doi.org/10.3390/electronics10050593
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Loff, E., Schleibaum, S., Müller, J.P., Säfken, B. (2024). Explaining Taxi Demand Prediction Models Based on Feature Importance. In: Nowaczyk, S., et al. Artificial Intelligence. ECAI 2023 International Workshops. ECAI 2023. Communications in Computer and Information Science, vol 1947. Springer, Cham. https://doi.org/10.1007/978-3-031-50396-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-50396-2_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-50395-5
Online ISBN: 978-3-031-50396-2
eBook Packages: Computer ScienceComputer Science (R0)