AMCNet: Adaptive Matching Constraint for Unsupervised Point Cloud Registration | SpringerLink
Skip to main content

AMCNet: Adaptive Matching Constraint for Unsupervised Point Cloud Registration

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14495))

Included in the following conference series:

  • 685 Accesses

Abstract

The registration of 3D point cloud with numerous applications in robotics, medical imaging and other industries. However, due to the lack of accurate data annotation, the performance of unsupervised point cloud registration networks is often unsatisfactory. In this paper, we propose an unsupervised method based on generating corresponding points and utilizing structural constraints for rigid point cloud registration. The key components in our approach are similarity optimization module and structure variation checking module. In the similarity optimization module, we improve the similarity matrix by adaptively weighting the matching scores of neighbors. Through this method, the spatial information of matching point pairs can be fully utilized, resulting in high-quality corresponding estimations. We observe that predicted point cloud is crucial for constructing accurate correspondences. Therefore, we developed a structure variation checking module to constrain the predicted point cloud and the source point cloud to have similar structural information. Based on the constraints, the extraction network is continuously optimized and adjusted to obtain even better features. The extensive experimental results show that our method achieves state-of-the-art performance when compared with other supervised and unsupervised tasks on the ModelNet40 data set, and significantly outperforms previous methods on the real-world indoor 7Scenes data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8464
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

  2. Ben-Shabat, Y., Lindenbaum, M., Fischer, A.: 3dmfv: three-dimensional point cloud classification in real-time using convolutional neural networks. IEEE Robot. Automat. Lett. 3(4), 3145–3152 (2018)

    Article  Google Scholar 

  3. Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. SPIE (1992)

    Google Scholar 

  4. Deschaud, J.E.: IMLS-slam: scan-to-model matching based on 3d data. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 2480–2485. IEEE (2018)

    Google Scholar 

  5. Groß, J., Ošep, A., Leibe, B.: Alignnet-3d: fast point cloud registration of partially observed objects. In: 2019 International Conference on 3d Vision (3DV), pp. 623–632. IEEE (2019)

    Google Scholar 

  6. Handa, A., Whelan, T., McDonald, J., Davison, A.J.: A benchmark for rgb-d visual odometry, 3d reconstruction and slam. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1524–1531. IEEE (2014)

    Google Scholar 

  7. Huang, S., Gojcic, Z., Usvyatsov, M., Wieser, A., Schindler, K.: Predator: registration of 3d point clouds with low overlap. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4267–4276 (2021)

    Google Scholar 

  8. Huang, X., Mei, G., Zhang, J.: Feature-metric registration: a fast semi-supervised approach for robust point cloud registration without correspondences. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11366–11374 (2020)

    Google Scholar 

  9. Jost, T., Hügli, H.: Fast ICP algorithms for shape registration. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 91–99. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45783-6_12

  10. Kadam, P., Zhang, M., Liu, S., Kuo, C.C.J.: R-pointhop: a green, accurate, and unsupervised point cloud registration method. IEEE Trans. Image Process. 31, 2710–2725 (2022)

    Article  Google Scholar 

  11. Li, J., Zhang, C., Xu, Z., Zhou, H., Zhang, C.: Iterative distance-aware similarity matrix convolution with mutual-supervised point elimination for efficient point cloud registration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 378–394. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_23

  12. Lin, X., Sun, S., Huang, W., Sheng, B., Li, P., Feng, D.D.: EAPT: efficient attention pyramid transformer for image processing. IEEE Trans. Multim. (2021)

    Google Scholar 

  13. Liu, Y., Cong, Y., Sun, G., Zhang, T., Dong, J., Liu, H.: L3doc: lifelong 3d object classification. IEEE Trans. Image Process. 30, 7486–7498 (2021)

    Article  Google Scholar 

  14. Pan, X., Xia, Z., Song, S., Li, L.E., Huang, G.: 3d object detection with pointformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7463–7472 (2021)

    Google Scholar 

  15. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  16. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3d registration. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3212–3217. IEEE (2009)

    Google Scholar 

  17. Sarode, V., et al.: Pcrnet: point cloud registration network using pointnet encoding. arXiv preprint arXiv:1908.07906 (2019)

  18. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 (2016)

    Google Scholar 

  19. Segal, A., Haehnel, D., Thrun, S.: Generalized-ICP. In: Robotics: Science and Systems, vol. 2, p. 435. Seattle (2009)

    Google Scholar 

  20. Shen, Y., Hui, L., Jiang, H., Xie, J., Yang, J.: Reliable inlier evaluation for unsupervised point cloud registration. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2198–2206 (2022)

    Google Scholar 

  21. Song, Y., Shen, W., Peng, K.: A novel partial point cloud registration method based on graph attention network. Vis. Comput. 39(3), 1109–1120 (2023)

    Article  Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  23. Wang, Y., et al.: Pillar-based object detection for autonomous driving. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 18–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_2

  24. Wang, Y., Solomon, J.M.: Deep closest point: Learning representations for point cloud registration. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3523–3532 (2019)

    Google Scholar 

  25. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. 38(5), 1–12 (2019)

    Article  Google Scholar 

  26. Yew, Z.J., Lee, G.H.: Rpm-net: robust point matching using learned features. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11824–11833 (2020)

    Google Scholar 

  27. Zeng, Y., Qian, Y., Zhu, Z., Hou, J., Yuan, H., He, Y.: Corrnet3d: unsupervised end-to-end learning of dense correspondence for 3d point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6052–6061 (2021)

    Google Scholar 

  28. Zhang, J., Singh, S.: Loam: lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9. Berkeley (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by national natural science foundation of China (No. 62202346), Hubei key research and development program (No. 2021BAA042), open project of engineering research center of Hubei province for clothing information (No. 2022HBCI01), Wuhan applied basic frontier research project (No. 2022013988065212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghua Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, F. et al. (2024). AMCNet: Adaptive Matching Constraint for Unsupervised Point Cloud Registration. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14495. Springer, Cham. https://doi.org/10.1007/978-3-031-50069-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50069-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50068-8

  • Online ISBN: 978-3-031-50069-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics