Enhancing Pest Detection Models Through Improved Annotations | SpringerLink
Skip to main content

Enhancing Pest Detection Models Through Improved Annotations

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2023)

Abstract

AI-based pest detection is gaining popularity in data-centric scenarios, providing farmers with excellent performance and decision support for pest control. However, these approaches often face challenges that require complex architectures. Alternatively, data-centric approaches aim to enhance the quality of training data. In this study, we present an approach that is particularly relevant when dealing with low data. Our proposed approach improves annotation quality without requiring additional manpower. We trained a model with data of inferior annotation quality and utilized its predictions to generate new annotations of higher quality. Results from our study demonstrate that, using a small dataset of 200 images with low resolution and variable lighting conditions, our model can improve the mean average precision (mAP) score by 1.1 points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://ultralytics.com/.

  2. 2.

    Open-source online tool: https://github.com/heartexlabs/labelImg.

References

  1. Bernhard, M., Schubert, M.: Correcting imprecise object locations for training object detectors in remote sensing applications. Remote Sens. 13(24) (2021). https://doi.org/10.3390/rs13244962, www.mdpi.com/2072-4292/13/24/4962

  2. Cardoso, B., Silva, C., Costa, J., Ribeiro, B.: Internet of things meets computer vision to make an intelligent pest monitoring network. Appl. Sci. 12(18) (2022). https://doi.org/10.3390/app12189397, www.mdpi.com/2076-3417/12/18/9397

  3. Costa, D., Silva, C., Costa, J., Ribeiro, B.: Optimizing object detection models via active learning. In: Iberian Conference on Pattern Recognition and Image Analysis: Pattern Recognition and Image Analysis. Springer International Publishing (2023)

    Google Scholar 

  4. Jocher, G., Chaurasia, A., Qiu, J.: YOLO by Ultralytics (2023). github.com/ultralytics/ultralytics

    Google Scholar 

  5. Jocher, G., Chaurasia, A., Stoken, A., Borovec, J., NanoCode012, Kwon, Y., Michael, K., TaoXie, Fang, J., imyhxy, Lorna, Yifu, Wong, C.V.A., Montes, D., Wang, Z., Fati, C., Nadar, J., Laughing, UnglvKitDe, Sonck, V., tkianai, yxNONG, Skalski, P., Hogan, A., Nair, D., Strobel, M., Jain, M.: ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). https://doi.org/10.5281/zenodo.7347926, 10.5281/zenodo.7347926

    Google Scholar 

  6. Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M., Kolesnikov, A., Duerig, T., Ferrari, V.: The open images dataset v4. Int. J. Comput. Vis. 128(7), 1956–1981 (2020). https://doi.org/10.1007/s11263-020-01316-z, 10.1007/2Fs11263-020-01316-z

  7. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision - ECCV 2014, pp. 740–755. Springer International Publishing, Cham (2014)

    Chapter  Google Scholar 

  8. Ma, J., Ushiku, Y., Sagara, M.: The effect of improving annotation quality on object detection datasets: a preliminary study. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 4849–4858 (2022). https://doi.org/10.1109/CVPRW56347.2022.00532

  9. Nieuwenhuizen, A., Hemming, J., Suh, H.: Detection and classification of insects on stick-traps in a tomato crop using faster r-cnn (2018). nccv18.nl/program/; the Netherlands Conference on Computer Vision, NCCV18; Conference date: 26-09-2018 Through 27-09-2018

    Google Scholar 

  10. Northcutt, C.G., Athalye, A., Mueller, J.: Pervasive label errors in test sets destabilize machine learning benchmarks (2021)

    Google Scholar 

  11. Ren, P., Xiao, Y., Chang, X., Huang, P.Y., Li, Z., Gupta, B.B., Chen, X., Wang, X.: A survey of deep active learning (2021)

    Google Scholar 

  12. Sani, I., Ismail, S.I., Abdullah, S., Jalinas, J., Jamian, S., Saad, N.: A review of the biology and control of whitefly, bemisia tabaci (hemiptera: Aleyrodidae), with special reference to biological control using entomopathogenic fungi. Insects 11(9) (2020). https://doi.org/10.3390/insects11090619, www.mdpi.com/2075-4450/11/9/619

  13. Terven, J., Cordova-Esparza, D.M.: A comprehensive review of yolo: from yolov1 to yolov8 and beyond (2023)

    Google Scholar 

  14. Wang, S., Gao, J., Li, B., Hu, W.: Narrowing the gap: improved detector training with noisy location annotations. Trans. Img. Proc. 31, 6369–6380 (2022). https://doi.org/10.1109/TIP.2022.3211468

  15. Wu, X., Xiao, L., Sun, Y., Zhang, J., Ma, T., He, L.: A survey of human-in-the-loop for machine learning. Futur. Gener. Comput. Syst. 135, 364–381 (2022) https://doi.org/10.1016/j.future.2022.05.014, www.sciencedirect.com/science/article/pii/S0167739X22001790

  16. Zha, D., Bhat, Z.P., Lai, K.H., Yang, F., Jiang, Z., Zhong, S., Hu, X.: Data-centric artificial intelligence: a survey (2023)

    Google Scholar 

Download references

Acknowledgments

This work was supported by project PEGADA 4.0 (PRR-C05-i03-000099), financed by the PPR - Plano de Recuperação e Resiliência and by national funds through FCT, within the scope of the project CISUC (UID/CEC/00326/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinis Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Costa, D., Silva, C., Costa, J., Ribeiro, B. (2023). Enhancing Pest Detection Models Through Improved Annotations. In: Moniz, N., Vale, Z., Cascalho, J., Silva, C., Sebastião, R. (eds) Progress in Artificial Intelligence. EPIA 2023. Lecture Notes in Computer Science(), vol 14116. Springer, Cham. https://doi.org/10.1007/978-3-031-49011-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49011-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49010-1

  • Online ISBN: 978-3-031-49011-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics