Load Flow Solution for Radial Distribution Networks Using Chaotic Opposition Based Whale Optimization Algorithm | SpringerLink
Skip to main content

Load Flow Solution for Radial Distribution Networks Using Chaotic Opposition Based Whale Optimization Algorithm

  • Conference paper
  • First Online:
Computational Intelligence in Communications and Business Analytics (CICBA 2023)

Abstract

A radial network is one that traverses a network without connecting to another source of supply. It is utilised for remote loads, such as in rural areas. For the load flow analysis of radial distribution systems, various forward-backward sweep techniques exist. This study explains a novel approach to load flow analysis for radial distribution systems. Encouraged by whales’ use of bubble-net hunting, WOA imitates humpback. The suggested technique is applied on IEEE 33-bus and IEEE 69-bus balanced radial distribution test networks to validate performance in tackling the described problem. The results show that the suggested approach produces workable and efficient solutions and may be successfully substituted for in real-world power systems for radial network load flow analysis. Additionally, to the best of the authors’ knowledge, this is the first report on the use of WOA in resolving the optimal DG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Salama, M.M.A., Chikhani, A.Y.: A simplified network approach to the VAr control problem for radial distribution systems. IEEE Trans. Power Deliv. 8(3), 1529–1535 (1993)

    Article  Google Scholar 

  2. Srinivas, M.S.: Distribution load flows: a brief review. In: 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No. 00CH37077), vol. 2, pp. 942–945. IEEE (2000)

    Google Scholar 

  3. Berg, R., Hawkins, E.S., Pleines, W.W.: Mechanized calculation of unbalanced load flow on radial distribution circuits. IEEE Trans. Power Appar. Syst. 1(4), 415–421 (1967)

    Article  Google Scholar 

  4. Luo, G.-X., Semlyen, A.: Efficient load flow for large weakly meshed networks. IEEE Trans. Power Syst. 5(4), 1309–1316 (1990)

    Article  Google Scholar 

  5. Carneiro, S., Pereira, J.L.R., Nepomucemo Garcia, P.A.: Unbalanced distribution system power flow using the current injection method. In: 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No. 00CH37077), vol. 2, pp. 946–950. IEEE (2000)

    Google Scholar 

  6. Mithulananthan, N., Salama, M.M.A., Canizares, C.A., Reeve, J.: Distribution system voltage regulation and var compensation for different static load models. Int. J. Electr. Eng. Educ. 37(4), 384–395 (2000)

    Article  Google Scholar 

  7. Nanda, J., Sharma Srinivas, M., Sharma, M., Dey, S.S., Lai, L.L.: New findings on radial distribution system load flow algorithms. In: 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No. 00CH37077), vol. 2, pp. 1157–1161. IEEE (2000)

    Google Scholar 

  8. Haque, M.H.: A general load flow method for distribution systems. Electr. Power Syst. Res. 54(1), 47–54 (2000)

    Article  Google Scholar 

  9. Shirmohammadi, D., Wayne Hong, H., Semlyen, A., Luo, G.X.: A compensation-based power flow method for weakly meshed distribution and transmission networks. IEEE Trans. Power Syst. 3(2):753–762 (1988)

    Google Scholar 

  10. Haque, M.H.: Load flow solution of distribution systems with voltage dependent load models. Electric Power Syst. Res. 36(3), 151–156 (1996)

    Article  Google Scholar 

  11. Amaresh, K., Sivanagaraju, S., Sankar, V.: Minimization of losses in radial distribution system by using HVDS. In:: 2006 International Conference on Power Electronic, Drives and Energy Systems, pp. 1–5. IEEE (2006)

    Google Scholar 

  12. Karami, A., Mohammadi, M.S.: Radial basis function neural network for power system load-flow. Int. J. Electr. Power Energy Syst. 30(1), 60–66 (2008)

    Article  Google Scholar 

  13. Liu, B., Wang, L., Jin, Y.-H., Tang, F., Huang, D.-X.: Improved particle swarm optimization combined with chaos. Chaos Solit. Fractals 25(5), 1261–1271 (2005)

    Article  MATH  Google Scholar 

  14. Zhang, W., Liu, Y.: Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm. Int. J. Electr. Power Energy Syst. 30(9), 525–532 (2008)

    Article  Google Scholar 

  15. Rout, U.K., Swain, R.K., Barisal, A.K., Prusty, R.C.: Clonal selection algorithm for dynamic economic dispatch with nonsmooth cost functions. Int. J. Sci. Eng. Res. 2(12), 1–5 (2011)

    Google Scholar 

  16. Udatha, H., Damodar Reddy, M.: Load flow analysis using real coded genetic algorithm. Int. J. Eng. Res. Appl. (IJERA) 4(2), 522–527 (2014)

    Google Scholar 

  17. Bhattacharya, A., Kumar, P.: Chattopadhyay: solving economic emission load dispatch problems using hybrid differential evolution. Appl. Soft Comput. 11(2), 2526–2537 (2011)

    Article  MathSciNet  Google Scholar 

  18. Sakr, W.S., El-Sehiemy, R.A., Azmy, A.M.: Adaptive differential evolution algorithm for efficient reactive power management. Appl. Soft Comput. 53, 336–351 (2017)

    Article  Google Scholar 

  19. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22(3), 52–67 (2002)

    Article  Google Scholar 

  20. Hooshmand, R.-A., Morshed, M.J., Parastegari, M.: Congestion management by determining optimal location of series facts devices using hybrid bacterial foraging and Nelder-Mead algorithm. Appl. Soft Comput. 28, 57–68 (2015)

    Article  Google Scholar 

  21. Yang, X.S., Deb, S.: Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. (IJMMNO) 1(4), 330–343 (2010)

    MATH  Google Scholar 

  22. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  23. Li, W., Wang, G.-G., Gandomi, A.H.: A survey of learning-based intelligent optimization algorithms. Arch. Comput. Methods Eng. 28, 3781–3799 (2021)

    Article  MathSciNet  Google Scholar 

  24. Huang, M., Zhai, Q., Chen, Y., Feng, S., Shu, F.: Multi-objective whale optimization algorithm for computation offloading optimization in mobile edge computing. Sensors 21(8), 2628 (2021)

    Article  Google Scholar 

  25. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  26. Bhesdadiya, R.H., Parmar, S.A., Trivedi, I.N., Jangir, P., Bhoye, M., Jangir, N.: Optimal active and reactive power dispatch problem solution using whale optimization algorithm. Indian J. Sci. Technol. 9(1), 1–6 (2016)

    Article  Google Scholar 

  27. Touma, H.J.: Study of the economic dispatch problem on IEEE 30-bus system using whale optimization algorithm. Int. J. Eng. Technol. Sci. 3(1), 11–18 (2016)

    Article  Google Scholar 

  28. Acharjee, P., Goswami, S.K.: Chaotic particle swarm optimization based robust load flow. Int. J. Electr. Power Energy Syst. 32(2), 141–146 (2010)

    Article  Google Scholar 

  29. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  30. Nguyen, T.T., Vo, D.N.: The application of one rank cuckoo search algorithm for solving economic load dispatch problems. Appl. Soft Comput. 37, 763–773 (2015)

    Article  Google Scholar 

  31. Awad, N.H., Ali, M.Z., Suganthan, P.N.: Ensemble sinusoidal differential covariance matrix adaptation with euclidean neighborhood for solving CEC2017 benchmark problems. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 372–379. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvabrata Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mukherjee, S., Roy, P.K. (2024). Load Flow Solution for Radial Distribution Networks Using Chaotic Opposition Based Whale Optimization Algorithm. In: Dasgupta, K., Mukhopadhyay, S., Mandal, J.K., Dutta, P. (eds) Computational Intelligence in Communications and Business Analytics. CICBA 2023. Communications in Computer and Information Science, vol 1955. Springer, Cham. https://doi.org/10.1007/978-3-031-48876-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48876-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48875-7

  • Online ISBN: 978-3-031-48876-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics