Index Tracking Via Learning to Predict Market Sensitivities | SpringerLink
Skip to main content

Index Tracking Via Learning to Predict Market Sensitivities

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 823))

Included in the following conference series:

  • 266 Accesses

Abstract

Index funds are substantially preferred by investors nowadays, and market sensitivities are instrumental in managing index funds. An index fund is a mutual fund aiming to track the returns of a predefined market index (e.g., the S &P 500). A basic strategy to manage an index fund is replicating the index’s constituents and weights identically, which is, however, cost-ineffective and impractical. To address this issue, it is required to replicate the index partially with accurately predicted market sensitivities. Accordingly, we propose a novel partial-replication method via learning to predict market sensitivities. We first examine deep-learning models to predict market sensitivities in a supervised manner with our data-processing methods. Then, we propose a partial-index-tracking optimization model controlling the net predicted market sensitivities of the portfolios and index to be the same. These processes’ efficacy is corroborated by our experiments on the Korea Composite Stock Price Index 200. Our experiments show a significant reduction of the prediction errors compared with historical estimations and competitive tracking errors of replicating the index utilizing fewer than half of the entire constituents. Therefore, we show that applying deep learning to predict market sensitivities is promising and that our portfolio construction methods are practically effective. Additionally, to our knowledge, this is the first study addressing market sensitivities focused on deep learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Look-ahead bias is a bias caused by utilizing data that are unavailable when constructing portfolios [36, 37]. For example, if an investing strategy uses data generated at time t to build a portfolio at t, then it has a look-ahead bias because the data generated at time t cannot be delivered to an investor at t due to delivery time.

References

  1. Heath, D., Macciocchi, D., Michaely, R., Ringgenberg, M.C.: Do index funds monitor? Rev. Financ. Stud. 35(1), 91–131 (2022)

    Article  Google Scholar 

  2. Oh, K.J., Kim, T.Y., Min, S.: Using genetic algorithm to support portfolio optimization for index fund management. Expert Syst. Appl. 28(2), 371–379 (2005)

    Article  Google Scholar 

  3. Kim, S., Kim, S.: Index tracking through deep latent representation learning. Quant. Financ. 20(4), 639–652 (2020)

    Article  MathSciNet  Google Scholar 

  4. Chang, K.P.: Evaluating mutual fund performance: an application of minimum convex input requirement set approach. Comput. Oper. Res. 31(6), 929–940 (2004)

    Article  Google Scholar 

  5. Keim, D.B.: An analysis of mutual fund design: the case of investing in small-cap stocks. J. Financ. Econ. 51(2), 173–194 (1999)

    Article  Google Scholar 

  6. Sharpe, W.F.: Risk, market sensitivity and diversification. Financ. Anal. J. 28(1), 74–79 (1972)

    Article  Google Scholar 

  7. Sharpe, W.F.: Risk, market sensitivity, and diversification. Financ. Anal. J. 51(1), 84–88 (1995)

    Article  Google Scholar 

  8. Blume, M.E.: Betas and their regression tendencies. J. Financ. 30(3), 785–795 (1975). https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.1975.tb01850.x

  9. Ferson, W.E., Harvey, C.R.: The risk and predictability of international equity returns. Rev. Financ. Stud. 6(3), 527–566 (1993)

    Article  Google Scholar 

  10. Pagan, A.: Some identification and estimation results for regression models with stochastically varying coefficients. J. Econ. 13(3), 341–363 (1980). https://www.sciencedirect.com/science/article/pii/0304407680900846

  11. Das, A., Ghoshal, T.K.: Market risk beta estimation using adaptive kalman filter. Int. J. Eng. Sci. Technol. 2(6), 1923–1934 (2010)

    Google Scholar 

  12. Engle, R.: Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. J. Bus. Econ. Stat. 20(3), 339–350 (2002). http://www.jstor.org/stable/1392121

  13. Engle, R.F.: Dynamic Conditional Beta. J. Financ. Econ. 14(4), 643–667 (2016). https://doi.org/10.1093/jjfinec/nbw006

  14. Siegel, A.F.: Measuring systematic risk using implicit beta. Manag. Sci. 41(1), 124–128 (1995). http://www.jstor.org/stable/2632906

  15. Buss, A., Vilkov, G.: Measuring equity risk with option-implied correlations. Rev. Financ. Stud. 25(10), 3113–3140 (2012). https://doi.org/10.1093/rfs/hhs087

  16. Hollstein, F., Prokopczuk, M.: Estimating beta. J. Financ. Quant. Anal. 51(4), 1437–1466 (2016)

    Article  Google Scholar 

  17. Faff, R.W., Hillier, D., Hillier, J.: Time varying beta risk: An analysis of alternative modelling techniques. J. Bus. Financ. Account. 27(5–6), 523–554 (2000). https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-5957.00324

  18. Hota, H., Handa, R., Shrivas, A.: Time series data prediction using sliding window based rbf neural network. Int. J. Comput. Intell. Res. 13(5), 1145–1156 (2017)

    Google Scholar 

  19. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81(10), 3088–3092 (1984)

    Article  Google Scholar 

  20. Fernández, A., Gómez, S.: Portfolio selection using neural networks. Comput. Oper. Res. 34(4), 1177–1191 (2007)

    Article  Google Scholar 

  21. Kwak, Y., Song, J., Lee, H.: Neural network with fixed noise for index-tracking portfolio optimization. Expert Syst. Appl. 183, 115298 (2021)

    Article  Google Scholar 

  22. Ouyang, H., Zhang, X., Yan, H.: Index tracking based on deep neural network. Cogn. Syst. Res. 57, 107–114 (2019)

    Article  Google Scholar 

  23. Bradrania, R., Pirayesh Neghab, D., Shafizadeh, M.: State-dependent stock selection in index tracking: a machine learning approach. Fin. Markets. Portfolio Mgmt. 36(1), 1–28 (2022)

    Article  Google Scholar 

  24. Zheng, Y., Chen, B., Hospedales, T.M., Yang, Y.: Index tracking with cardinality constraints: A stochastic neural networks approach. Proc. AAAI Conf. Artif. Intell. 34(01), 1242–1249 (2020). https://ojs.aaai.org/index.php/AAAI/article/view/5478

  25. Drobetz, W., Hollstein, F., Otto, T., Prokopczuk, M.: Estimating stock market betas via machine learning (2021). available at SSRN: https://ssrn.com/abstract=3933048

  26. Chang, B.Y., Christoffersen, P., Jacobs, K., Vainberg, G.: Option-implied measures of equity risk*. Rev. Financ. 16(2), 385–428 (2011). https://doi.org/10.1093/rof/rfq029

  27. Skintzi, V.D., Refenes, A.P.N.: Implied correlation index: A new measure of diversification. J. Futures Markets 25(2), 171–197 (2005). https://onlinelibrary.wiley.com/doi/abs/10.1002/fut.20137

  28. Kempf, A., Korn, O., Saßning, S.: Portfolio optimization using forward-looking information*. Rev. Financ. 19(1), 467–490 (2014). https://doi.org/10.1093/rof/rfu006

  29. Luenberger, D., et al.: Investment science: International edition. OUP Catalogue (2009)

    Google Scholar 

  30. Zhang, W., Yang, G., Lin, Y., Ji, C., Gupta, M.M.: On definition of deep learning. In: 2018 World Automation Congress (WAC), pp. 1–5. IEEE (2018)

    Google Scholar 

  31. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  32. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for statistical machine translation (2014). arXiv:1406.1078

  33. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  34. Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences. Atmos. Environ. 32(14–15), 2627–2636 (1998)

    Article  Google Scholar 

  35. Fu, R., Zhang, Z., Li, L.: Using lstm and gru neural network methods for traffic flow prediction. In: 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 324–328. IEEE (2016)

    Google Scholar 

  36. Zhou, X., Jain, S.: Active Equity Management (2014)

    Google Scholar 

  37. Isichenko, M.: Quantitative Portfolio Management: The Art and Science of Statistical Arbitrage. Wiley, New York (2021). https://books.google.co.kr/books?id=lHcxzgEACAAJ

  38. Pope, P.F., Yadav, P.K.: Discovering errors in tracking error. J. Portf. Manag. 20(2), 27–32 (1994)

    Article  Google Scholar 

  39. Roll, R.: A mean/variance analysis of tracking error. J. Portf. Manag. 18(4), 13–22 (1992)

    Article  Google Scholar 

  40. Canakgoz, N.A., Beasley, J.E.: Mixed-integer programming approaches for index tracking and enhanced indexation. Eur. J. Oper. Res. 196(1), 384–399 (2009)

    Article  MathSciNet  Google Scholar 

  41. Casella, G., Berger, R.L.: Statistical inference. Cengage Learn. (2021)

    Google Scholar 

  42. Wang, X.: Asymptotics of the theil-sen estimator in the simple linear regression model with a random covariate. J. Nonparametric Stat. 17(1), 107–120 (2005)

    Article  MathSciNet  Google Scholar 

  43. Dang, X., Peng, H., Wang, X., Zhang, H.: Theil-sen estimators in a multiple linear regression model. Olemiss Edu. (2008)

    Google Scholar 

  44. Pafka, S., Kondor, I.: Noisy covariance matrices and portfolio optimization ii. Phys. A 319, 487–494 (2003)

    Article  MathSciNet  Google Scholar 

  45. Shanno, D.F., Weil, R.L.: “linear” programming with absolute-value functionals. Oper. Res. 19(1), 120–124 (1971)

    Google Scholar 

  46. Rardin, R.L., Rardin, R.L.: Optimization in Operations Research, vol. 166. Prentice Hall Upper Saddle River, NJ (1998)

    Google Scholar 

  47. Baker, S.R., Bloom, N., Davis, S.J., Kost, K.J., Sammon, M.C., Viratyosin, T.: The unprecedented stock market impact of covid-19. Technical report., national Bureau of economic research (2020)

    Google Scholar 

  48. Dong, X., Yu, Z., Cao, W., Shi, Y., Ma, Q.: A survey on ensemble learning. Front. Comput. Sci. 14(2), 241–258 (2020)

    Article  Google Scholar 

  49. Ganaie, M.A., Hu, M., et al.: Ensemble deep learning: A review (2021). arXiv:2104.02395

  50. Fama, E.F., French, K.R.: A five-factor asset pricing model. J. Financ. Econ. 116(1), 1–22 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanghoon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hong, Y., Kim, Y., Kim, J., Choi, Y. (2024). Index Tracking Via Learning to Predict Market Sensitivities. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-031-47724-9_9

Download citation

Publish with us

Policies and ethics