Abstract
Index funds are substantially preferred by investors nowadays, and market sensitivities are instrumental in managing index funds. An index fund is a mutual fund aiming to track the returns of a predefined market index (e.g., the S &P 500). A basic strategy to manage an index fund is replicating the index’s constituents and weights identically, which is, however, cost-ineffective and impractical. To address this issue, it is required to replicate the index partially with accurately predicted market sensitivities. Accordingly, we propose a novel partial-replication method via learning to predict market sensitivities. We first examine deep-learning models to predict market sensitivities in a supervised manner with our data-processing methods. Then, we propose a partial-index-tracking optimization model controlling the net predicted market sensitivities of the portfolios and index to be the same. These processes’ efficacy is corroborated by our experiments on the Korea Composite Stock Price Index 200. Our experiments show a significant reduction of the prediction errors compared with historical estimations and competitive tracking errors of replicating the index utilizing fewer than half of the entire constituents. Therefore, we show that applying deep learning to predict market sensitivities is promising and that our portfolio construction methods are practically effective. Additionally, to our knowledge, this is the first study addressing market sensitivities focused on deep learning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Look-ahead bias is a bias caused by utilizing data that are unavailable when constructing portfolios [36, 37]. For example, if an investing strategy uses data generated at time t to build a portfolio at t, then it has a look-ahead bias because the data generated at time t cannot be delivered to an investor at t due to delivery time.
References
Heath, D., Macciocchi, D., Michaely, R., Ringgenberg, M.C.: Do index funds monitor? Rev. Financ. Stud. 35(1), 91–131 (2022)
Oh, K.J., Kim, T.Y., Min, S.: Using genetic algorithm to support portfolio optimization for index fund management. Expert Syst. Appl. 28(2), 371–379 (2005)
Kim, S., Kim, S.: Index tracking through deep latent representation learning. Quant. Financ. 20(4), 639–652 (2020)
Chang, K.P.: Evaluating mutual fund performance: an application of minimum convex input requirement set approach. Comput. Oper. Res. 31(6), 929–940 (2004)
Keim, D.B.: An analysis of mutual fund design: the case of investing in small-cap stocks. J. Financ. Econ. 51(2), 173–194 (1999)
Sharpe, W.F.: Risk, market sensitivity and diversification. Financ. Anal. J. 28(1), 74–79 (1972)
Sharpe, W.F.: Risk, market sensitivity, and diversification. Financ. Anal. J. 51(1), 84–88 (1995)
Blume, M.E.: Betas and their regression tendencies. J. Financ. 30(3), 785–795 (1975). https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.1975.tb01850.x
Ferson, W.E., Harvey, C.R.: The risk and predictability of international equity returns. Rev. Financ. Stud. 6(3), 527–566 (1993)
Pagan, A.: Some identification and estimation results for regression models with stochastically varying coefficients. J. Econ. 13(3), 341–363 (1980). https://www.sciencedirect.com/science/article/pii/0304407680900846
Das, A., Ghoshal, T.K.: Market risk beta estimation using adaptive kalman filter. Int. J. Eng. Sci. Technol. 2(6), 1923–1934 (2010)
Engle, R.: Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. J. Bus. Econ. Stat. 20(3), 339–350 (2002). http://www.jstor.org/stable/1392121
Engle, R.F.: Dynamic Conditional Beta. J. Financ. Econ. 14(4), 643–667 (2016). https://doi.org/10.1093/jjfinec/nbw006
Siegel, A.F.: Measuring systematic risk using implicit beta. Manag. Sci. 41(1), 124–128 (1995). http://www.jstor.org/stable/2632906
Buss, A., Vilkov, G.: Measuring equity risk with option-implied correlations. Rev. Financ. Stud. 25(10), 3113–3140 (2012). https://doi.org/10.1093/rfs/hhs087
Hollstein, F., Prokopczuk, M.: Estimating beta. J. Financ. Quant. Anal. 51(4), 1437–1466 (2016)
Faff, R.W., Hillier, D., Hillier, J.: Time varying beta risk: An analysis of alternative modelling techniques. J. Bus. Financ. Account. 27(5–6), 523–554 (2000). https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-5957.00324
Hota, H., Handa, R., Shrivas, A.: Time series data prediction using sliding window based rbf neural network. Int. J. Comput. Intell. Res. 13(5), 1145–1156 (2017)
Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81(10), 3088–3092 (1984)
Fernández, A., Gómez, S.: Portfolio selection using neural networks. Comput. Oper. Res. 34(4), 1177–1191 (2007)
Kwak, Y., Song, J., Lee, H.: Neural network with fixed noise for index-tracking portfolio optimization. Expert Syst. Appl. 183, 115298 (2021)
Ouyang, H., Zhang, X., Yan, H.: Index tracking based on deep neural network. Cogn. Syst. Res. 57, 107–114 (2019)
Bradrania, R., Pirayesh Neghab, D., Shafizadeh, M.: State-dependent stock selection in index tracking: a machine learning approach. Fin. Markets. Portfolio Mgmt. 36(1), 1–28 (2022)
Zheng, Y., Chen, B., Hospedales, T.M., Yang, Y.: Index tracking with cardinality constraints: A stochastic neural networks approach. Proc. AAAI Conf. Artif. Intell. 34(01), 1242–1249 (2020). https://ojs.aaai.org/index.php/AAAI/article/view/5478
Drobetz, W., Hollstein, F., Otto, T., Prokopczuk, M.: Estimating stock market betas via machine learning (2021). available at SSRN: https://ssrn.com/abstract=3933048
Chang, B.Y., Christoffersen, P., Jacobs, K., Vainberg, G.: Option-implied measures of equity risk*. Rev. Financ. 16(2), 385–428 (2011). https://doi.org/10.1093/rof/rfq029
Skintzi, V.D., Refenes, A.P.N.: Implied correlation index: A new measure of diversification. J. Futures Markets 25(2), 171–197 (2005). https://onlinelibrary.wiley.com/doi/abs/10.1002/fut.20137
Kempf, A., Korn, O., Saßning, S.: Portfolio optimization using forward-looking information*. Rev. Financ. 19(1), 467–490 (2014). https://doi.org/10.1093/rof/rfu006
Luenberger, D., et al.: Investment science: International edition. OUP Catalogue (2009)
Zhang, W., Yang, G., Lin, Y., Ji, C., Gupta, M.M.: On definition of deep learning. In: 2018 World Automation Congress (WAC), pp. 1–5. IEEE (2018)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for statistical machine translation (2014). arXiv:1406.1078
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences. Atmos. Environ. 32(14–15), 2627–2636 (1998)
Fu, R., Zhang, Z., Li, L.: Using lstm and gru neural network methods for traffic flow prediction. In: 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 324–328. IEEE (2016)
Zhou, X., Jain, S.: Active Equity Management (2014)
Isichenko, M.: Quantitative Portfolio Management: The Art and Science of Statistical Arbitrage. Wiley, New York (2021). https://books.google.co.kr/books?id=lHcxzgEACAAJ
Pope, P.F., Yadav, P.K.: Discovering errors in tracking error. J. Portf. Manag. 20(2), 27–32 (1994)
Roll, R.: A mean/variance analysis of tracking error. J. Portf. Manag. 18(4), 13–22 (1992)
Canakgoz, N.A., Beasley, J.E.: Mixed-integer programming approaches for index tracking and enhanced indexation. Eur. J. Oper. Res. 196(1), 384–399 (2009)
Casella, G., Berger, R.L.: Statistical inference. Cengage Learn. (2021)
Wang, X.: Asymptotics of the theil-sen estimator in the simple linear regression model with a random covariate. J. Nonparametric Stat. 17(1), 107–120 (2005)
Dang, X., Peng, H., Wang, X., Zhang, H.: Theil-sen estimators in a multiple linear regression model. Olemiss Edu. (2008)
Pafka, S., Kondor, I.: Noisy covariance matrices and portfolio optimization ii. Phys. A 319, 487–494 (2003)
Shanno, D.F., Weil, R.L.: “linear” programming with absolute-value functionals. Oper. Res. 19(1), 120–124 (1971)
Rardin, R.L., Rardin, R.L.: Optimization in Operations Research, vol. 166. Prentice Hall Upper Saddle River, NJ (1998)
Baker, S.R., Bloom, N., Davis, S.J., Kost, K.J., Sammon, M.C., Viratyosin, T.: The unprecedented stock market impact of covid-19. Technical report., national Bureau of economic research (2020)
Dong, X., Yu, Z., Cao, W., Shi, Y., Ma, Q.: A survey on ensemble learning. Front. Comput. Sci. 14(2), 241–258 (2020)
Ganaie, M.A., Hu, M., et al.: Ensemble deep learning: A review (2021). arXiv:2104.02395
Fama, E.F., French, K.R.: A five-factor asset pricing model. J. Financ. Econ. 116(1), 1–22 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hong, Y., Kim, Y., Kim, J., Choi, Y. (2024). Index Tracking Via Learning to Predict Market Sensitivities. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-031-47724-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-47724-9_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47723-2
Online ISBN: 978-3-031-47724-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)