Brain Waves Combined with Evoked Potentials as Biometric Approach for User Identification: A Survey | SpringerLink
Skip to main content

Brain Waves Combined with Evoked Potentials as Biometric Approach for User Identification: A Survey

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 823))

Included in the following conference series:

  • 203 Accesses

Abstract

The growing availability of low-cost devices able of performing an Electroencephalography (EEG) has opened stimulating scenarios in the security field, where such data could be exploited as a biometric approach for user identification. However, a series of problems, first of all, the difficulty of obtaining unique and stable EEG patterns over time, has made this type of research a hard challenge that has forced researchers to design ever more efficient solutions. In this context, one of the approaches that has proved most effective is the one based on the application of external stimuli to the user during the EEG data collection, a stimulation method named Evoked Potentials (EPs), which is long used for other purposes in the clinical setting, in this context used to increase the EEG patterns stability. The combination of EEG and EP has generated an ever-increasing number of literature works but their heterogeneity makes it difficult to take stock of the state-of-the-art, so this work aims to analyze the literature of the last six years, providing information useful for directing the research of those who work in this field.

Artificial Intelligence and Big Data Laboratory: https://aibd.unica.it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 20591
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 25739
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abed, S.S., Abed, Z.F.: User authentication system based specified brain waves. J. Discrete Math. Sci. Cryptogr. 23(5), 1021–1024 (2020)

    Google Scholar 

  2. Bidgoly, A.J., Bidgoly, H.J., Arezoumand, Z.: A survey on methods and challenges in EEG based authentication. Comput. Secur. 93, 101788 (2020)

    Google Scholar 

  3. Bidgoly, A.J., Bidgoly, H.J., Arezoumand, Z.: Towards a universal and privacy preserving EEG-based authentication system. Sci. Rep. 12(1), 1–12 (2022)

    Google Scholar 

  4. Carrión-Ojeda, D., Fonseca-Delgado, R., Pineda, I.: Analysis of factors that influence the performance of biometric systems based on EEG signals. Expert Syst. Appl. 165, 113967 (2021)

    Article  Google Scholar 

  5. Carta, S., Podda, A.S., Recupero, D.R., Saia, R.: A local feature engineering strategy to improve network anomaly detection. Fut. Internet 12(10), 177 (2020)

    Google Scholar 

  6. Coull, B.M., Pedley, T.A.: Intermittent photic stimulation. Clinical usefulness of non-convulsive responses. Electroencephalogr. Clin. Neurophysiol. 44(3), 353–363 (1978)

    Google Scholar 

  7. Creel, D.J.: Visually evoked potentials. Handb. Clin. Neurol. 160, 501–522 (2019)

    Google Scholar 

  8. Dahel, S.K., Xiao, Q.: Accuracy performance analysis of multimodal biometrics. In: IEEE Systems, Man and Cybernetics Society Information Assurance Workshop, pp. 170–173. IEEE (2003)

    Google Scholar 

  9. Das, R., Maiorana, E., Campisi, P.: EEG biometrics using visual stimuli: a longitudinal study. IEEE Signal Process. Lett. 23(3), 341–345 (2016)

    Article  Google Scholar 

  10. Di, G.-Q., Fan, M.-C., Lin, Q.-H.: An experimental study on EEG characteristics induced by intermittent pure tone stimuli at different frequencies. Appl. Acoust. 141, 46–53 (2018)

    Article  Google Scholar 

  11. El-Fiqi, H., Wang, M., Salimi, N., Kasmarik, K., Barlow, M., Abbass, H.: Convolution neural networks for person identification and verification using steady state visual evoked potential. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1062–1069. IEEE (2018)

    Google Scholar 

  12. Fraschini, M., Pani, S.M., Didaci, L., Marcialis, G.L.: Robustness of functional connectivity metrics for EEG-based personal identification over task-induced intra-class and inter-class variations. Pattern Recogn. Lett. 125, 49–54 (2019)

    Google Scholar 

  13. Jayarathne, I., Cohen, M., Amarakeerthi, S.: Survey of EEG-based biometric authentication. In: 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST), pp. 324–329. IEEE (2017)

    Google Scholar 

  14. Jijomon, C.M., Vinod, A.P.: Person-identification using familiar-name auditory evoked potentials from frontal EEG electrodes. Biomed. Signal Process. Control 68, 102739 (2021)

    Article  Google Scholar 

  15. Katsigiannis, S., Arnau-González, P., Arevalillo-Herráez, M., Ramzan, N.: Single-channel EEG-based subject identification using visual stimuli. In: 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 1–4. IEEE (2021)

    Google Scholar 

  16. Kaur, B., Kumar, P., Roy, P.P., Singh, D.: Impact of ageing on EEG based biometric systems. In: 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), pp. 459–464. IEEE (2017)

    Google Scholar 

  17. Kim, H.-S., Ahn, M.H., Min, B.-K.: Deep-learning-based automatic selection of fewest channels for brain-machine interfaces. IEEE Trans. Cybern. (2021)

    Google Scholar 

  18. Lebedeva, N.N., Karimova, E.D.: Stability of human EEG patterns in different tasks: the person authentication problem. Neurosci. Behav. Physiol. 50(7), 874–880 (2020)

    Article  Google Scholar 

  19. Li, S., Marino, L., Alluri, V.: Music stimuli for EEG-based user authentication. In: The Thirty-Third International Flairs Conference (2020)

    Google Scholar 

  20. Li, W., Huang, Z.: Individual identification using code-modulated visual potentials with left-and-right balance. In: 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 699–703. IEEE (2020)

    Google Scholar 

  21. Matthews, G., Reinerman-Jones, L., Abich IV, J., Kustubayeva, A.: Optimizing performance prediction. Metrics for individual differences in EEG response to cognitive workload. Personal. Individ. Differ. 118, 22–28 (2017)

    Google Scholar 

  22. Miyake, T., Kinjo, N., Nakanishi, I.: Wavelet transform and machine learning-based biometric authentication using EEG evoked by invisible visual stimuli. In: 2020 IEEE REGION 10 CONFERENCE (TENCON), pp. 573–578. IEEE (2020)

    Google Scholar 

  23. Moctezuma, L.A., Molinas, M.: Towards a minimal EEG channel array for a biometric system using resting-state and a genetic algorithm for channel selection. Sci. Rep. 10(1), 1–14 (2020)

    Google Scholar 

  24. Zhendong, M., Yin, J., Jianfeng, H.: Application of a brain-computer interface for person authentication using EEG responses to photo stimuli. J. Integr. Neurosci. 17(1), 113–124 (2018)

    Article  Google Scholar 

  25. Mukai, K., Nakanishi, I.: Introduction of fractal dimension feature and reduction of calculation amount in person authentication using evoked EEG by ultrasound. In: 2020 IEEE REGION 10 CONFERENCE (TENCON), pp. 567–572. IEEE (2020)

    Google Scholar 

  26. Nakanishi, I., Hattori, M.: Biometric potential of brain waves evoked by invisible visual stimulation. In: 2017 International Conference on Biometrics and Kansei Engineering (ICBAKE), pp. 94–99. IEEE (2017)

    Google Scholar 

  27. Nakanishi, I., Maruoka, T.: Biometric authentication using evoked potentials stimulated by personal ultrasound. In: 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), pp. 365–368. IEEE (2019)

    Google Scholar 

  28. Nakanishi, I., Maruoka, T.: Biometrics using electroencephalograms stimulated by personal ultrasound and multidimensional nonlinear features. Electronics 9(1), 24 (2020)

    Article  Google Scholar 

  29. Nakashima, H., Shindo, Y., Nakanishi, I.: Performance improvement in user verification using evoked electroencephalogram by imperceptible vibration stimuli. In: 2021 20th International Symposium on Communications and Information Technologies (ISCIT), pp. 109–113. IEEE (2021)

    Google Scholar 

  30. Pham, T., Ma, W., Tran, D., Nguyen, P., Phung, D.: Multi-factor EEG-based user authentication. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 4029–4034. IEEE (2014)

    Google Scholar 

  31. Pham, T., Ma, W., Tran, D., Tran, D.S., Phung, D.: A study on the stability of EEG signals for user authentication. In: 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 122–125. IEEE (2015)

    Google Scholar 

  32. Piciucco, E., Maiorana, E., Falzon, O., Camilleri, K.P., Campisi, P.: Steady-state visual evoked potentials for EEG-based biometric identification. In: 2017 International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–5. IEEE (2017)

    Google Scholar 

  33. Plourde, G.: Auditory evoked potentials. Best Pract. Res. Clin. Anaesthesiol. 20(1), 129–139 (2006)

    Article  Google Scholar 

  34. Prathibha, R., Swetha, L., Shobha, K.R.: Brain computer interface: design and development of a smart robotic gripper for a prosthesis environment. In: 2017 International Conference on Networks & Advances in Computational Technologies (NetACT), pp. 278–283. IEEE (2017)

    Google Scholar 

  35. Puengdang, S., Tuarob, S., Sattabongkot, T., Sakboonyarat, B.: EEG-based person authentication method using deep learning with visual stimulation. In: 2019 11th International Conference on Knowledge and Smart Technology (KST), pp. 6–10. IEEE (2019)

    Google Scholar 

  36. Rahman, M.A., Nakanishi, I.: Person authentication using brain waves evoked by individual-related and imperceptible visual stimuli. In: 2022 International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–5. IEEE (2022)

    Google Scholar 

  37. Rosli, F.A., Saidatul, A., Abdullah, A.A., Navea, R.F.: The wavelet packet decomposition features applied in EEG based authentication system. J. Phys.: Conf. Ser. 1997, 012035 (IOP Publishing) (2021)

    Google Scholar 

  38. Saia, R., Carta, S., Fenu, G., Pompianu, L.: Brain waves and evoked potentials as biometric user identification strategy: an affordable low-cost approach. In: SECRYPT, pp. 614–619. SCITEPRESS (2022)

    Google Scholar 

  39. Saia, R., Carta, S., Fenu, G., Pompianu, L.: A region-based training data segmentation strategy to credit scoring. In: SECRYPT, pp. 275–282. SCITEPRESS (2022)

    Google Scholar 

  40. Saia, R., Carta, S., Fenu, G., Pompianu, L.: Influencing brain waves by evoked potentials as biometric approach: taking stock of the last six years of research. Neural Comput. Appl. 1–27 (2023)

    Google Scholar 

  41. Saia, R., Carta, S., Recupero, D.R., Fenu, G., Saia, M.: A discretized enriched technique to enhance machine learning performance in credit scoring. In: KDIR, pp. 202–213 (2019)

    Google Scholar 

  42. Saia, R., Carta, S., Recupero, D.R., Fenu, G., Stanciu, M.: A discretized extended feature space (defs) model to improve the anomaly detection performance in network intrusion detection systems. In: KDIR pp. 322–329 (2019)

    Google Scholar 

  43. Saia, R., Podda, A.S., Fenu, G., Balia, R.: Decomposing training data to improve network intrusion detection performance. In: KDIR, pp. 241–248. SCITEPRESS (2021)

    Google Scholar 

  44. Seha, S.N.A., Hatzinakos, S.: A new approach for EEG-based biometric authentication using auditory stimulation. In: 2019 International Conference on Biometrics (ICB), pp. 1–6. IEEE (2019)

    Google Scholar 

  45. Seha, S.N.A., Hatzinakos, D.: Longitudinal assessment of EEG biometrics under auditory stimulation: a deep learning approach. In: 2021 29th European Signal Processing Conference (EUSIPCO), pp. 1386–1390. IEEE (2021)

    Google Scholar 

  46. Sharif, M., Raza, M., Shah, J.H., Yasmin, M., Fernandes, S.L.: An overview of biometrics methods. In: Handbook of Multimedia Information Security: techniques and Applications, pp. 15–35 (2019)

    Google Scholar 

  47. Shindo, Y., Nakanishi, I.: Person verification using electroencephalograms evoked by new imperceptible vibration stimulation. In: 2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech), pp. 282–286. IEEE (2021)

    Google Scholar 

  48. Shindo, Y., Nakanishi, I., Takemura, A.: A study on person verification using electroencephalograms evoked by unperceivable vibration stimuli. In: 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW), pp. 416–419. IEEE (2019)

    Google Scholar 

  49. Skoric, M.K., Jerbic, A.B., Krois, I., Cifrek, M., Isgum, V.: Vibratory evoked potentials. In: 6th European Conference of the International Federation for Medical and Biological Engineering, pp. 505–508. Springer (2015)

    Google Scholar 

  50. Soni, Y.S., Somani, S.B., Shete, V.V..: Biometric user authentication using brain waves. In: 2016 International Conference on Inventive Computation Technologies (ICICT), vol. 2, pp. 1–6. IEEE (2016)

    Google Scholar 

  51. Subha, D.P., Joseph, P.K., Acharya U, R., Lim, C.M., et al.: EEG signal analysis: a survey. J. Med. Syst. 34(2), 195–212 (2010)

    Google Scholar 

  52. Thakor, N.V., Sherman, D.L.: EEG signal processing: theory and applications. In: Neural Engineering, pp. 259–303. Springer (2013)

    Google Scholar 

  53. Thomas, K.P., Vinod, A.P.: EEG-based biometric authentication using gamma band power during rest state. Circuits Syst. Signal Process. 37(1), 277–289 (2018)

    Google Scholar 

  54. Thomas, K.P., Vinod, A.P.: Toward EEG-based biometric systems: the great potential of brain-wave-based biometrics. IEEE Syst. Man Cybern. Mag. 3(4), 6–15 (2017)

    Google Scholar 

  55. Thomas, K.P., Vinod, A.P., et al.: EEG-based biometrie authentication using self-referential visual stimuli. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3048–3053. IEEE (2017)

    Google Scholar 

  56. Von Bünau, P., Meinecke, F.C., Scholler, S., Müller, K.-R.: Finding stationary brain sources in EEG data. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 2810–2813. IEEE (2010)

    Google Scholar 

  57. Walsh, P., Kane, N., Butler, S.: The clinical role of evoked potentials. J. Neurol. Neurosurg. Psychiatr. 76(suppl 2), ii16–ii22 (2005)

    Google Scholar 

  58. Wan, Z., Yang, R., Huang, M., Zeng, N., Liu, X.: A review on transfer learning in EEG signal analysis. Neurocomputing 421, 1–14 (2021)

    Article  Google Scholar 

  59. Wijayanto, I., Hadiyoso, S., Sekarningrum, F.A.: Biometric identification based on EEG signal with photo stimuli using Hjorth descriptor. In: 2020 8th International Conference on Information and Communication Technology (ICoICT), pp. 1–4. IEEE (2020)

    Google Scholar 

  60. Xavier, G., Ting, A.S., Fauzan, N.: P-eg002. An exploratory study of brain waves and corresponding brain regions of fatigue post-call doctors using quantitative electroencephalogram. Clin. Neurophysiol. 132(8), e78 (2021)

    Google Scholar 

  61. Yamashita, M., Nakazawa, M., Nishikawa, Y.: The proposal and it’s evalution of biometric authentication method by EEG analysis using image stimulation. In: 2018 Eleventh International Conference on Mobile Computing and Ubiquitous Network (ICMU), pp. 1–4. IEEE (2018)

    Google Scholar 

  62. Yang, S., Deravi, F.: On the usability of electroencephalographic signals for biometric recognition: a survey. IEEE Trans. Hum.-Mach. Syst. 47(6), 958–969 (2017)

    Article  Google Scholar 

  63. Yap, H.Y., Choo, Y.H., Mohd Yusoh, Z.I., Khoh, W.H.: Person authentication based on eye-closed and visual stimulation using EEG signals. Brain Inform. 8(1), 1–13 (2021)

    Google Scholar 

  64. Zeng, Y., Qunjian, W., Yang, K., Tong, L., Yan, B., Shu, J., Yao, D.: EEG-based identity authentication framework using face rapid serial visual presentation with optimized channels. Sensors 19(1), 6 (2019)

    Article  Google Scholar 

  65. Zhao, H., Chen, Y., Pei, W., Chen, H., Wang, Y.: Towards online applications of EEG biometrics using visual evoked potentials. Expert Syst. Appl. 177, 114961 (2021)

    Article  Google Scholar 

  66. Zhao, H., Wang, Y., Liu, Z., Pei, W., Chen, H.: Individual identification based on code-modulated visual-evoked potentials. IEEE Trans. Inf. Forensics Secur. 14(12), 3206–3216 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially funded and supported by Visioscientiae Srl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Saia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saia, R., Carta, S., Fenu, G., Pompianu, L. (2024). Brain Waves Combined with Evoked Potentials as Biometric Approach for User Identification: A Survey. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-031-47724-9_47

Download citation

Publish with us

Policies and ethics