Abstract
The growing availability of low-cost devices able of performing an Electroencephalography (EEG) has opened stimulating scenarios in the security field, where such data could be exploited as a biometric approach for user identification. However, a series of problems, first of all, the difficulty of obtaining unique and stable EEG patterns over time, has made this type of research a hard challenge that has forced researchers to design ever more efficient solutions. In this context, one of the approaches that has proved most effective is the one based on the application of external stimuli to the user during the EEG data collection, a stimulation method named Evoked Potentials (EPs), which is long used for other purposes in the clinical setting, in this context used to increase the EEG patterns stability. The combination of EEG and EP has generated an ever-increasing number of literature works but their heterogeneity makes it difficult to take stock of the state-of-the-art, so this work aims to analyze the literature of the last six years, providing information useful for directing the research of those who work in this field.
Artificial Intelligence and Big Data Laboratory: https://aibd.unica.it.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abed, S.S., Abed, Z.F.: User authentication system based specified brain waves. J. Discrete Math. Sci. Cryptogr. 23(5), 1021–1024 (2020)
Bidgoly, A.J., Bidgoly, H.J., Arezoumand, Z.: A survey on methods and challenges in EEG based authentication. Comput. Secur. 93, 101788 (2020)
Bidgoly, A.J., Bidgoly, H.J., Arezoumand, Z.: Towards a universal and privacy preserving EEG-based authentication system. Sci. Rep. 12(1), 1–12 (2022)
Carrión-Ojeda, D., Fonseca-Delgado, R., Pineda, I.: Analysis of factors that influence the performance of biometric systems based on EEG signals. Expert Syst. Appl. 165, 113967 (2021)
Carta, S., Podda, A.S., Recupero, D.R., Saia, R.: A local feature engineering strategy to improve network anomaly detection. Fut. Internet 12(10), 177 (2020)
Coull, B.M., Pedley, T.A.: Intermittent photic stimulation. Clinical usefulness of non-convulsive responses. Electroencephalogr. Clin. Neurophysiol. 44(3), 353–363 (1978)
Creel, D.J.: Visually evoked potentials. Handb. Clin. Neurol. 160, 501–522 (2019)
Dahel, S.K., Xiao, Q.: Accuracy performance analysis of multimodal biometrics. In: IEEE Systems, Man and Cybernetics Society Information Assurance Workshop, pp. 170–173. IEEE (2003)
Das, R., Maiorana, E., Campisi, P.: EEG biometrics using visual stimuli: a longitudinal study. IEEE Signal Process. Lett. 23(3), 341–345 (2016)
Di, G.-Q., Fan, M.-C., Lin, Q.-H.: An experimental study on EEG characteristics induced by intermittent pure tone stimuli at different frequencies. Appl. Acoust. 141, 46–53 (2018)
El-Fiqi, H., Wang, M., Salimi, N., Kasmarik, K., Barlow, M., Abbass, H.: Convolution neural networks for person identification and verification using steady state visual evoked potential. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1062–1069. IEEE (2018)
Fraschini, M., Pani, S.M., Didaci, L., Marcialis, G.L.: Robustness of functional connectivity metrics for EEG-based personal identification over task-induced intra-class and inter-class variations. Pattern Recogn. Lett. 125, 49–54 (2019)
Jayarathne, I., Cohen, M., Amarakeerthi, S.: Survey of EEG-based biometric authentication. In: 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST), pp. 324–329. IEEE (2017)
Jijomon, C.M., Vinod, A.P.: Person-identification using familiar-name auditory evoked potentials from frontal EEG electrodes. Biomed. Signal Process. Control 68, 102739 (2021)
Katsigiannis, S., Arnau-González, P., Arevalillo-Herráez, M., Ramzan, N.: Single-channel EEG-based subject identification using visual stimuli. In: 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 1–4. IEEE (2021)
Kaur, B., Kumar, P., Roy, P.P., Singh, D.: Impact of ageing on EEG based biometric systems. In: 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), pp. 459–464. IEEE (2017)
Kim, H.-S., Ahn, M.H., Min, B.-K.: Deep-learning-based automatic selection of fewest channels for brain-machine interfaces. IEEE Trans. Cybern. (2021)
Lebedeva, N.N., Karimova, E.D.: Stability of human EEG patterns in different tasks: the person authentication problem. Neurosci. Behav. Physiol. 50(7), 874–880 (2020)
Li, S., Marino, L., Alluri, V.: Music stimuli for EEG-based user authentication. In: The Thirty-Third International Flairs Conference (2020)
Li, W., Huang, Z.: Individual identification using code-modulated visual potentials with left-and-right balance. In: 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 699–703. IEEE (2020)
Matthews, G., Reinerman-Jones, L., Abich IV, J., Kustubayeva, A.: Optimizing performance prediction. Metrics for individual differences in EEG response to cognitive workload. Personal. Individ. Differ. 118, 22–28 (2017)
Miyake, T., Kinjo, N., Nakanishi, I.: Wavelet transform and machine learning-based biometric authentication using EEG evoked by invisible visual stimuli. In: 2020 IEEE REGION 10 CONFERENCE (TENCON), pp. 573–578. IEEE (2020)
Moctezuma, L.A., Molinas, M.: Towards a minimal EEG channel array for a biometric system using resting-state and a genetic algorithm for channel selection. Sci. Rep. 10(1), 1–14 (2020)
Zhendong, M., Yin, J., Jianfeng, H.: Application of a brain-computer interface for person authentication using EEG responses to photo stimuli. J. Integr. Neurosci. 17(1), 113–124 (2018)
Mukai, K., Nakanishi, I.: Introduction of fractal dimension feature and reduction of calculation amount in person authentication using evoked EEG by ultrasound. In: 2020 IEEE REGION 10 CONFERENCE (TENCON), pp. 567–572. IEEE (2020)
Nakanishi, I., Hattori, M.: Biometric potential of brain waves evoked by invisible visual stimulation. In: 2017 International Conference on Biometrics and Kansei Engineering (ICBAKE), pp. 94–99. IEEE (2017)
Nakanishi, I., Maruoka, T.: Biometric authentication using evoked potentials stimulated by personal ultrasound. In: 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), pp. 365–368. IEEE (2019)
Nakanishi, I., Maruoka, T.: Biometrics using electroencephalograms stimulated by personal ultrasound and multidimensional nonlinear features. Electronics 9(1), 24 (2020)
Nakashima, H., Shindo, Y., Nakanishi, I.: Performance improvement in user verification using evoked electroencephalogram by imperceptible vibration stimuli. In: 2021 20th International Symposium on Communications and Information Technologies (ISCIT), pp. 109–113. IEEE (2021)
Pham, T., Ma, W., Tran, D., Nguyen, P., Phung, D.: Multi-factor EEG-based user authentication. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 4029–4034. IEEE (2014)
Pham, T., Ma, W., Tran, D., Tran, D.S., Phung, D.: A study on the stability of EEG signals for user authentication. In: 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 122–125. IEEE (2015)
Piciucco, E., Maiorana, E., Falzon, O., Camilleri, K.P., Campisi, P.: Steady-state visual evoked potentials for EEG-based biometric identification. In: 2017 International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–5. IEEE (2017)
Plourde, G.: Auditory evoked potentials. Best Pract. Res. Clin. Anaesthesiol. 20(1), 129–139 (2006)
Prathibha, R., Swetha, L., Shobha, K.R.: Brain computer interface: design and development of a smart robotic gripper for a prosthesis environment. In: 2017 International Conference on Networks & Advances in Computational Technologies (NetACT), pp. 278–283. IEEE (2017)
Puengdang, S., Tuarob, S., Sattabongkot, T., Sakboonyarat, B.: EEG-based person authentication method using deep learning with visual stimulation. In: 2019 11th International Conference on Knowledge and Smart Technology (KST), pp. 6–10. IEEE (2019)
Rahman, M.A., Nakanishi, I.: Person authentication using brain waves evoked by individual-related and imperceptible visual stimuli. In: 2022 International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–5. IEEE (2022)
Rosli, F.A., Saidatul, A., Abdullah, A.A., Navea, R.F.: The wavelet packet decomposition features applied in EEG based authentication system. J. Phys.: Conf. Ser. 1997, 012035 (IOP Publishing) (2021)
Saia, R., Carta, S., Fenu, G., Pompianu, L.: Brain waves and evoked potentials as biometric user identification strategy: an affordable low-cost approach. In: SECRYPT, pp. 614–619. SCITEPRESS (2022)
Saia, R., Carta, S., Fenu, G., Pompianu, L.: A region-based training data segmentation strategy to credit scoring. In: SECRYPT, pp. 275–282. SCITEPRESS (2022)
Saia, R., Carta, S., Fenu, G., Pompianu, L.: Influencing brain waves by evoked potentials as biometric approach: taking stock of the last six years of research. Neural Comput. Appl. 1–27 (2023)
Saia, R., Carta, S., Recupero, D.R., Fenu, G., Saia, M.: A discretized enriched technique to enhance machine learning performance in credit scoring. In: KDIR, pp. 202–213 (2019)
Saia, R., Carta, S., Recupero, D.R., Fenu, G., Stanciu, M.: A discretized extended feature space (defs) model to improve the anomaly detection performance in network intrusion detection systems. In: KDIR pp. 322–329 (2019)
Saia, R., Podda, A.S., Fenu, G., Balia, R.: Decomposing training data to improve network intrusion detection performance. In: KDIR, pp. 241–248. SCITEPRESS (2021)
Seha, S.N.A., Hatzinakos, S.: A new approach for EEG-based biometric authentication using auditory stimulation. In: 2019 International Conference on Biometrics (ICB), pp. 1–6. IEEE (2019)
Seha, S.N.A., Hatzinakos, D.: Longitudinal assessment of EEG biometrics under auditory stimulation: a deep learning approach. In: 2021 29th European Signal Processing Conference (EUSIPCO), pp. 1386–1390. IEEE (2021)
Sharif, M., Raza, M., Shah, J.H., Yasmin, M., Fernandes, S.L.: An overview of biometrics methods. In: Handbook of Multimedia Information Security: techniques and Applications, pp. 15–35 (2019)
Shindo, Y., Nakanishi, I.: Person verification using electroencephalograms evoked by new imperceptible vibration stimulation. In: 2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech), pp. 282–286. IEEE (2021)
Shindo, Y., Nakanishi, I., Takemura, A.: A study on person verification using electroencephalograms evoked by unperceivable vibration stimuli. In: 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW), pp. 416–419. IEEE (2019)
Skoric, M.K., Jerbic, A.B., Krois, I., Cifrek, M., Isgum, V.: Vibratory evoked potentials. In: 6th European Conference of the International Federation for Medical and Biological Engineering, pp. 505–508. Springer (2015)
Soni, Y.S., Somani, S.B., Shete, V.V..: Biometric user authentication using brain waves. In: 2016 International Conference on Inventive Computation Technologies (ICICT), vol. 2, pp. 1–6. IEEE (2016)
Subha, D.P., Joseph, P.K., Acharya U, R., Lim, C.M., et al.: EEG signal analysis: a survey. J. Med. Syst. 34(2), 195–212 (2010)
Thakor, N.V., Sherman, D.L.: EEG signal processing: theory and applications. In: Neural Engineering, pp. 259–303. Springer (2013)
Thomas, K.P., Vinod, A.P.: EEG-based biometric authentication using gamma band power during rest state. Circuits Syst. Signal Process. 37(1), 277–289 (2018)
Thomas, K.P., Vinod, A.P.: Toward EEG-based biometric systems: the great potential of brain-wave-based biometrics. IEEE Syst. Man Cybern. Mag. 3(4), 6–15 (2017)
Thomas, K.P., Vinod, A.P., et al.: EEG-based biometrie authentication using self-referential visual stimuli. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3048–3053. IEEE (2017)
Von Bünau, P., Meinecke, F.C., Scholler, S., Müller, K.-R.: Finding stationary brain sources in EEG data. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 2810–2813. IEEE (2010)
Walsh, P., Kane, N., Butler, S.: The clinical role of evoked potentials. J. Neurol. Neurosurg. Psychiatr. 76(suppl 2), ii16–ii22 (2005)
Wan, Z., Yang, R., Huang, M., Zeng, N., Liu, X.: A review on transfer learning in EEG signal analysis. Neurocomputing 421, 1–14 (2021)
Wijayanto, I., Hadiyoso, S., Sekarningrum, F.A.: Biometric identification based on EEG signal with photo stimuli using Hjorth descriptor. In: 2020 8th International Conference on Information and Communication Technology (ICoICT), pp. 1–4. IEEE (2020)
Xavier, G., Ting, A.S., Fauzan, N.: P-eg002. An exploratory study of brain waves and corresponding brain regions of fatigue post-call doctors using quantitative electroencephalogram. Clin. Neurophysiol. 132(8), e78 (2021)
Yamashita, M., Nakazawa, M., Nishikawa, Y.: The proposal and it’s evalution of biometric authentication method by EEG analysis using image stimulation. In: 2018 Eleventh International Conference on Mobile Computing and Ubiquitous Network (ICMU), pp. 1–4. IEEE (2018)
Yang, S., Deravi, F.: On the usability of electroencephalographic signals for biometric recognition: a survey. IEEE Trans. Hum.-Mach. Syst. 47(6), 958–969 (2017)
Yap, H.Y., Choo, Y.H., Mohd Yusoh, Z.I., Khoh, W.H.: Person authentication based on eye-closed and visual stimulation using EEG signals. Brain Inform. 8(1), 1–13 (2021)
Zeng, Y., Qunjian, W., Yang, K., Tong, L., Yan, B., Shu, J., Yao, D.: EEG-based identity authentication framework using face rapid serial visual presentation with optimized channels. Sensors 19(1), 6 (2019)
Zhao, H., Chen, Y., Pei, W., Chen, H., Wang, Y.: Towards online applications of EEG biometrics using visual evoked potentials. Expert Syst. Appl. 177, 114961 (2021)
Zhao, H., Wang, Y., Liu, Z., Pei, W., Chen, H.: Individual identification based on code-modulated visual-evoked potentials. IEEE Trans. Inf. Forensics Secur. 14(12), 3206–3216 (2019)
Acknowledgments
This research was partially funded and supported by Visioscientiae Srl.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Saia, R., Carta, S., Fenu, G., Pompianu, L. (2024). Brain Waves Combined with Evoked Potentials as Biometric Approach for User Identification: A Survey. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-031-47724-9_47
Download citation
DOI: https://doi.org/10.1007/978-3-031-47724-9_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47723-2
Online ISBN: 978-3-031-47724-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)