Improved Technique for Dimensionality Reduction: Star and Quasar Classification with Typical Testors | SpringerLink
Skip to main content

Improved Technique for Dimensionality Reduction: Star and Quasar Classification with Typical Testors

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 823))

Included in the following conference series:

  • 244 Accesses

Abstract

This work compares the feature selection technique offered by Testor Theory, using the Yablonski and Compatible Sets (YYC) algorithm for the calculation of a fitting typical testor, against the dimensionality reduction given by the principal component analysis (PCA) calculation. Using the results obtained from the previous algorithms and using a Support Vector Machine (SVM) as a classification model, we acquire the classification results of stars and quasars. Lastly, we analyze the advantages shown by typical testors from the experimental results obtained over the ones obtained from the PCA technique.

WWW home page: https://www.usfq.edu.ec.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Lazo-Cortes, M., Ruiz-Shulcloper, J., Alba-Cabrera, E.: An overview of the evolution of the concept of testor. Pattern Recognit. 753–762 (2001)

    Google Scholar 

  2. Alba, E., Santana, R.: Generación de matrices para evaluar el desempeño de estrategias de búsqueda de testores típicos. Avances en Ciencias e Ingenierías 30–35 (2010)

    Google Scholar 

  3. Vásquez, R.A., Godoy-Calderón, S.: Using testor theory to reduce the dimension of neural network models. Res. Comput. Sci. 93–103 (2007)

    Google Scholar 

  4. Alba, E., Ibarra, J., Godoy, S., Cervantes, F.: YYC: a fast performance incremental algorithm for finding typical testors. Iberoamerican Congr. Pattern Recognit. 416–423 (2014)

    Google Scholar 

  5. Fedesorian: Stellar Classification Dataset—SDSS17. Last accessed 21 September 2022. www.kaggle.com/datasets/fedesoriano/stellar-classification-dataset-sdss17

  6. Jollifre, I.T.: Principle Component Analysis, 2nd edn. Springer, Berlin (2002)

    Google Scholar 

  7. Abdi, H., Williams, L.J.: Principle component analysis. WIREs Comput. Stat. 433–459 (2010)

    Google Scholar 

  8. Mammone, A., Turchi, M., Cristianini, N.: Support vector machines. WI-REs Comput. Stat. 283–289 (2009)

    Google Scholar 

  9. Torres-Constante, E., Ibarra-Fiallo, J., Intriago-Pazmiño, M.: A new approach for optimal selection of features for classification based on rough sets, evolution and neural networks. In: Arai, K. (ed.) Intelligent Systems and Applications. IntelliSys 2022. Lecture Notes in Networks and Systems, vol. 542. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16072-1_16

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateo Martínez-Mejía .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martínez-Mejía, M., Ibarra-Fiallo, J. (2024). Improved Technique for Dimensionality Reduction: Star and Quasar Classification with Typical Testors. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-031-47724-9_19

Download citation

Publish with us

Policies and ethics