Abstract
This work compares the feature selection technique offered by Testor Theory, using the Yablonski and Compatible Sets (YYC) algorithm for the calculation of a fitting typical testor, against the dimensionality reduction given by the principal component analysis (PCA) calculation. Using the results obtained from the previous algorithms and using a Support Vector Machine (SVM) as a classification model, we acquire the classification results of stars and quasars. Lastly, we analyze the advantages shown by typical testors from the experimental results obtained over the ones obtained from the PCA technique.
WWW home page: https://www.usfq.edu.ec.
Similar content being viewed by others
References
Lazo-Cortes, M., Ruiz-Shulcloper, J., Alba-Cabrera, E.: An overview of the evolution of the concept of testor. Pattern Recognit. 753–762 (2001)
Alba, E., Santana, R.: Generación de matrices para evaluar el desempeño de estrategias de búsqueda de testores típicos. Avances en Ciencias e Ingenierías 30–35 (2010)
Vásquez, R.A., Godoy-Calderón, S.: Using testor theory to reduce the dimension of neural network models. Res. Comput. Sci. 93–103 (2007)
Alba, E., Ibarra, J., Godoy, S., Cervantes, F.: YYC: a fast performance incremental algorithm for finding typical testors. Iberoamerican Congr. Pattern Recognit. 416–423 (2014)
Fedesorian: Stellar Classification Dataset—SDSS17. Last accessed 21 September 2022. www.kaggle.com/datasets/fedesoriano/stellar-classification-dataset-sdss17
Jollifre, I.T.: Principle Component Analysis, 2nd edn. Springer, Berlin (2002)
Abdi, H., Williams, L.J.: Principle component analysis. WIREs Comput. Stat. 433–459 (2010)
Mammone, A., Turchi, M., Cristianini, N.: Support vector machines. WI-REs Comput. Stat. 283–289 (2009)
Torres-Constante, E., Ibarra-Fiallo, J., Intriago-Pazmiño, M.: A new approach for optimal selection of features for classification based on rough sets, evolution and neural networks. In: Arai, K. (ed.) Intelligent Systems and Applications. IntelliSys 2022. Lecture Notes in Networks and Systems, vol. 542. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16072-1_16
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Martínez-Mejía, M., Ibarra-Fiallo, J. (2024). Improved Technique for Dimensionality Reduction: Star and Quasar Classification with Typical Testors. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-031-47724-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-47724-9_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47723-2
Online ISBN: 978-3-031-47724-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)