Locally Enhanced Chan-Vese Model with Anisotropic Mesh Adaptation for Intensity Inhomogeneous Image Segmentation | SpringerLink
Skip to main content

Locally Enhanced Chan-Vese Model with Anisotropic Mesh Adaptation for Intensity Inhomogeneous Image Segmentation

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 824))

Included in the following conference series:

  • 394 Accesses

Abstract

Chan-Vese (CV) model is a well-known mathematical model for image segmentation; however, it has difficulty handling images with inhomogeneous intensity. Many models have been proposed to address this difficulty. In this paper, we propose a locally enhanced Chan-Vese model (LECV) to successfully segment images with intensity inhomogeneity. We define a new signed pressure force (SPF) function based on the local image information from a triangular mesh representation. The anisotropic mesh representation (AMA representation) of the image also helps improving the computational accuracy and efficiency. Numerical results demonstrate that our proposed LECV model provides better segmentation for images with inhomogeneous intensity than the traditional Chan-Vese model as well as a few commonly used models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 26311
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 32889
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fang, L., Zhao, W., Li, X., Wang, X.: A convex active contour model driven by local entropy energy with applications to infrared ship target segmentation. Opt. Laser Technol. 96, 166–175 (2017)

    Article  Google Scholar 

  2. Bialas, J., Oommen, T., Havens, T.C.: Optimal segmentation of high spatial resolution images for the classification of buildings using random forests. Int. J. Appl. Earth Obs. Geoinf.Geoinf. 82, 101895 (2019)

    Google Scholar 

  3. Zhang, W., Wang, X., Zhang, P., Chen, J.: Global optimal hybrid geometric active contour for automated lung segmentation on CT images. Comput. Biol. Med.. Biol. Med. 91, 168–180 (2017)

    Article  Google Scholar 

  4. Tong, S.-G., Huang, Y.Y., Tong, Z.M.: A robust face recognition method combining LBP with multi-mirror symmetry for images with various face interferences. Int. J. Autom. Comput.Autom. Comput. 16(5), 671–682 (2019)

    Article  Google Scholar 

  5. Chun, L., Chunhua, X., Jian, Y., Yingying, X., Junliang, B.: A method for coastal oil tank detection in polarimetrie SAR images based on recognition of T-shaped harbor. J. Syst. Eng. Electron. 29(3), 499–509 (2018)

    Article  Google Scholar 

  6. Guan, S.-Y., Wang, T.-M., Meng, C., Wang, J.-C.: A review of point feature based medical image registration. Chin. J. Mech. Eng. 31(1), 1–16 (2018)

    Article  Google Scholar 

  7. Mumford, D.B., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  Google Scholar 

  8. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  Google Scholar 

  9. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)

    Article  MathSciNet  Google Scholar 

  10. Badoual, A., Unser, M., Depeursinge, A.: Texture-driven parametric snakes for semi-automatic image segmentation. Comput. Vis. Image Underst.. Vis. Image Underst. 188, 102793 (2019)

    Article  Google Scholar 

  11. Liu, G., Deng, M.: Parametric active contour based on sparse decomposition for multi-objects extraction. Signal Process. 148, 314–321 (2018)

    Article  Google Scholar 

  12. Bai, J., Shah, A., Wu, X.: Optimal multi-object segmentation with novel gradient vector flow based shape priors. Comput. Med. Imaging Graph.. Med. Imaging Graph. 69, 96–111 (2018)

    Article  Google Scholar 

  13. Han, B., Wu, Y.: Active contours driven by global and local weighted signed pressure force for image segmentation. Pattern Recogn.Recogn. 88, 715–728 (2019)

    Article  Google Scholar 

  14. Liux, C., Liu, W., Xing, W.: An improved edge-based level set method combining local regional fitting information for noisy image segmentation. Signal Process. 130, 12–21 (2017)

    Article  Google Scholar 

  15. Ding, K., Xiao, L., Weng, G.: Active contours driven by local pre-fitting energy for fast image segmentation. Pattern Recogn. Lett.Recogn. Lett. 104, 29–36 (2018)

    Article  Google Scholar 

  16. Yu, H., He, F., Pan, Y.: A scalable region-based level set method using adaptive bilateral filter for noisy image segmentation. Multimed. Tools Appl. 79(9), 5743–5765 (2020)

    Article  Google Scholar 

  17. Liu, H., Fang, J., Zhang, Z., Lin, Y.: A novel active contour model guided by global and local signed energy-based pressure force. IEEE Access 8, 59412–59426 (2020)

    Article  Google Scholar 

  18. Abdelsamea, M,M., Tsaftaris, S.A.: Active contour model driven by globally signed region pressure force. In: 2013 18th International Conference on Digital Signal Processing (DSP) (2013)

    Google Scholar 

  19. Song, H.: Active contours driven by regularised gradient flux flows for image segmentation. Electron. Lett. 50(14), 992–994 (2014)

    Article  Google Scholar 

  20. Chen, L., Zhou, Y., Wang, Y., Yang, J.: GACV: geodesic-aided C-V method. Pattern Recogn.Recogn. 39(7), 1391–1395 (2006)

    Article  Google Scholar 

  21. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. VisionComput. Vision 22(1), 61–79 (1997)

    Article  Google Scholar 

  22. Zhang, K., Zhang, L., Song, H., Zhou, W.: Active contours with selective local or global segmentation: A new formulation and level set method. Image Vis. Comput.Comput. 28(4), 668–676 (2010)

    Article  Google Scholar 

  23. Li, C., Kao, C.-Y., Gore, J.C., Ding, Z.: Implicit active contours driven by local binary fitting energy. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  24. Li, C., Kao, C.-Y., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)

    Article  MathSciNet  Google Scholar 

  25. Zhang, K., Song, H., Zhang, L.: Active contours driven by local image fitting energy. Pattern Recogn.Recogn. 43(4), 1199–1206 (2010)

    Article  Google Scholar 

  26. Wang, L., Li, C., Sun, Q., Xia, D., Kao, C.-Y.: Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Comput. Med. Imaging Graph. 33(7), 520–531 (2009)

    Google Scholar 

  27. Wang, H., Huang, T.-Z., Xu, Z., Wang, Y.: A two-stage image segmentation via global and local region active contours. Neurocomputing 205, 130–140 (2016)

    Article  Google Scholar 

  28. Wang, L., He, L., Mishra, A., Li, C.: Active contours driven by local Gaussian distribution fitting energy. Signal Process. 89(12), 2435–2447 (2009)

    Article  Google Scholar 

  29. Wang, P., Sun, K., Chen, Z.: Local and global intensity information integrated geodesic model for image segmentation. In: 2012 International Conference on Computer Science and Electronics Engineering (2012)

    Google Scholar 

  30. Tran, T.-T., Pham, V.-T., Chiu, Y.-J., Shyu, K.-K.: Active contour with selective local or global segmentation for intensity inhomogeneous image. In: 2010 3rd International Conference on Computer Science and Information Technology (2010)

    Google Scholar 

  31. Li, X., Jiang, D., Shi, Y., Li, W.: Segmentation of MR image using local and global region based geodesic model. Biomed. Eng. Online 14(1), 02 (2015)

    Article  Google Scholar 

  32. Abbas K., Li, X.: Anisotropic mesh adaptation for image segmentation based on Mumford-Shah functional. 17 July 2020. https://arxiv.org/abs/2007.08696, unpublished

  33. Huang, W., Li, X.: An anisotropic mesh adaptation method for the finite element solution of variational problems. Finite Elem. Anal. Des. 46, 61–73 (2010)

    Article  MathSciNet  Google Scholar 

  34. Li, X., Huang, W.: An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems. J. Comput. Phys.Comput. Phys. 229(21), 8072–8094 (2010)

    Article  MathSciNet  Google Scholar 

  35. Li, X., Huang, W.: Maximum principle for the finite element solution of time-dependent anisotropic diffusion problems. Numeric. Methods Partial Differ Equ. 29, 1963–1985 (2013)

    Article  MathSciNet  Google Scholar 

  36. Li, X.: Anisotropic mesh adaptation for finite element solution of anisotropic porous medium equation. Comput. Math. Appl.. Math. Appl. 75, 2086–2099 (2018)

    Article  MathSciNet  Google Scholar 

  37. Huang, W.: Mathematical principles of anisotropic mesh adaptation. Commun. Comput. Phys 1(2), 276–310 (2006)

    Google Scholar 

  38. Li, X.: Anisotropic mesh adaptation for image representation. EURASIP J. Image Video Process. 2016(1), 1–16 (2016). https://doi.org/10.1186/s13640-016-0132-7

    Article  Google Scholar 

  39. Huang, W.: Metric tensors for anisotropic mesh generation. J. Comput. Phys.Comput. Phys. 204(2), 633–665 (2005)

    Article  MathSciNet  Google Scholar 

  40. Two Apples Red and Green wesbite. https://www.tapeciarnia.pl/94419_dwa_jablka_czerwone_zielone

  41. Haddad, I.: Outdoor Plants: Chinese Evergreen (2020). https://pep-khaoula.netlify.app/product/chinese-evergreen

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianping Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abbas, K.K., Li, X. (2024). Locally Enhanced Chan-Vese Model with Anisotropic Mesh Adaptation for Intensity Inhomogeneous Image Segmentation. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 824. Springer, Cham. https://doi.org/10.1007/978-3-031-47715-7_9

Download citation

Publish with us

Policies and ethics