Mining Interesting Aggregate Tuples | SpringerLink
Skip to main content

Mining Interesting Aggregate Tuples

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 824))

Included in the following conference series:

  • 383 Accesses

Abstract

In business intelligence, the concept of data cube offers aggregate views over multiple dimensions of business. Computing the data cube is a challenge because of the exponential number of cuboids. This number is not only an important problem of computing, but also of searching for what is interesting or useful in the data cube. This paper presents the concept of interesting aggregate tuple that can be useful for managers to decide on their business. This concept is useful because (i) interesting aggregate tuples are those with important and credible aggregate values, and (ii) the number of interesting aggregate tuples is very small that can be considered by humans. The algorithm for searching for interesting aggregate tuples is implemented and experienced on the real datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 26311
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 32889
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beyer, K., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg cube. In: Proceedings of ACM Special Interest Group on Management of Data (SIGMOD’99), pp. 359–370 (1999)

    Google Scholar 

  2. Han, J., Pei, J., Dong, G., Wang, K.: Efficient computation of iceberg cubes with complex measures. In: Proceedings of ACM SIGMOD’01, pp. 1–12 (2001)

    Google Scholar 

  3. Xin, D., Han, J., Li, X., Wah, B.W.: Star-cubing: computing iceberg cubes by top-down and bottom-up integration. In: Proceedings of VLDB’03, pp. 476–487 (2003)

    Google Scholar 

  4. Shao, Z., Han, J., Xin, D.: Mm-cubing: computing iceberg cubes by factorizing the lattice space. In: Proceedings of International Conference. on Scientific and Statistical Database Management (SSDBM 2004), pp. 213–222 (2004)

    Google Scholar 

  5. Vitter, J.S., Wang, M., Iyer, B.: Data cube approximation and histograms via wavelets. In: Proceedings of International Conference on Information and Knowledge Management (CIKM’98), pp. 96–104 (1998)

    Google Scholar 

  6. Agarwal, S., et al.: On the computation of multidimensional aggregates. In: Proceedings of VLDB’96, pp. 506–521 (1996)

    Google Scholar 

  7. Harinarayan, V., Rajaraman, A., Ullman, J.: Implementing data cubes efficiently. In: Proceedings of SIGMOD’96, pp. 205–216 (1996)

    Google Scholar 

  8. Ross, K.A., Srivastava, D.: Fast computation of sparse data cubes. In: Proceedings of VLDB’97, pp. 116–125 (1997)

    Google Scholar 

  9. Casali, A., Cicchetti, R., Lakhal, L.: Extracting semantics from data cubes using cube transversals and closures. In: Proceedings of International Conference on Knowledge Discovery and Data Mining (KDD’03), pp. 69–78 (2003)

    Google Scholar 

  10. Casali, A., Nedjar, S., Cicchetti, R., Lakhal, L., Novelli, N.: Lossless reduction of datacubes using partitions. Int. J. Data Warehous. Mining (IJDWM) 5(1), 18–35 (2009)

    Google Scholar 

  11. Lakshmanan, L., Pei, J., Han, J.: Quotient cube: How to summarize the semantics of a data cube. In: Proceedings of VLDB’02, pp. 778–789 (2002)

    Google Scholar 

  12. Sismanis, Y., Deligiannakis, A., Roussopoulos, N., Kotidis, Y.: Dwarf: shrinking the petacube. In: Proceedings of ACM SIGMOD’02, pp. 464–475 (2002)

    Google Scholar 

  13. Wang, W., Lu, H., Feng, J., Yu, J.X.: Condensed cube: an efficient approach to reducing data cube size. In: Proceedings of International Conference on Data Engineering 2002, pp. 155–165 (2002)

    Google Scholar 

  14. Lakshmanan, L.V.S., Pei, J., Zhao, Y.: QC-trees: an efficient summary structure for semantic OLAP. In: Proceedings of ACM SIGMOD’03, pp. 64–75 (2003)

    Google Scholar 

  15. Feng, Y., Agrawal, D., Abbadi, A.E., Metwally, A.: Range cube: efficient cube computation by exploiting data correlation. In: Proceedings of International Conference on Data Engineering 2004, pp. 658–670 (2004)

    Google Scholar 

  16. Morfonios, K., Ioannidis, Y.: Supporting the data cube lifecycle: the power of ROLAP. VLDB J. 17(4), 729–764 (2008)

    Article  Google Scholar 

  17. Phan-Luong, V.: A simple and efficient method for computing data cubes. In: Proceedings of The 4th International Conference on Communications, Computation, Networks and Technologies INNOV 2015, pp. 50–55 (2015)

    Google Scholar 

  18. Phan-Luong, V.: A simple data cube representation for efficient computing and updating. Int. J. Adv. Intell. Syst. 9(3 & 4), 255–264 (2016). www.iariajournals.org/intelligent_systems

  19. Phan-Luong, V.: Searching data cube for submerging and emerging cuboids. In: Proceedings of The 2017 IEEE International Conference on Advanced Information Networking and Applications Science AINA 2017, IEEE, pp. 586–593 (2017)

    Google Scholar 

  20. Phan-Luong, V.: First-half index base for querying data cube. In: Intelligent Systems and Applications, Proceedings of Intelligent Systems Conference 2018 (IntelliSys 2018), 6–7 Septembre 2018, London, UK (2018)

    Google Scholar 

  21. Phan-Luong, V.: A complete index base for querying data cube. In: Arai, K. (ed.) Proceedings of the 2021 Intelligent Systems Conference (IntelliSys), vol. 2, Intelligent Systems and Applications Lecture Notes in Networks and Systems 295. Springer Nature Switzerland AG 2022, IntelliSys 2021, LNNS 295, pp. 486–500 (2022). https://doi.org/10.1007/978-3-030-82196-8_36

  22. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the ICDE Conference, pp. 421–430 (2001)

    Google Scholar 

  23. Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the average number of maxima in a set of vectors and applications. J. ACM (1978)

    Google Scholar 

  24. Vlachou, A., Vazirgiannis, M.: Ranking the sky: discovering the importance of SKYLINE points through subspace dominance relationships. Data Knowl. Eng. 69, 943–964 (2010)

    Article  Google Scholar 

  25. Spyratos, N., Sugibuchi, T., Simonenko, E., Meghini, C.: Computing the skyline of a relational table based on a query lattice. In: CEUR Workshop Proceedings, vol. 876, pp. 145–160 (2012)

    Google Scholar 

  26. Valkanas, G., Papadopoulos, A., Gunopulos, D.: Skyline ranking á la IR. In: CEUR Workshop Proceedings, vol. 1133, pp. 182–187 (2014)

    Google Scholar 

  27. Preisinger, T., Endres, M.: Looking for the best, but not too many of them: multi-level and top-k skylines. Int. J. Adv. Softw. 8, 467–480 (2015)

    Google Scholar 

  28. Lakhal, L., Nedjar, S., Cicchetti, R.: Multidimensional skyline analysis based on agree concept lattices. Intell. Data Anal. 21, 1245–1265 (2017)

    Article  Google Scholar 

  29. Alouaoui, H., Lakhal, L., Cicchetti, R., Casali, A.: CoSky: a practical method for ranking skylines in databases. The 11th International Conference on Knowledge Discovery and Information Retrieval, pp. 508–515, Sept 2019, Vienna, Austria (2019)

    Google Scholar 

  30. Luk, M.-H., Yiu, M.L., Lo, E.: Group-by skyline query processing in relational engines. In: CIKM’09, 2–6 Nov 2009, Hong Kong, China, pp. 1433–1436 (2009). https://doi.org/10.1145/1645953.1646138

  31. Blackard, J.A.: The forest covertype dataset (1998). https://ftp.ics.uci.edu/pub/machine-learning-databases/covtype

  32. Hahn, C., Warren, S., London, J.: Edited synoptic cloud re- ports from ships and land stations over the globe (2010). www.cdiac.esd.ornl.gov/cdiac/ndps/ndp026b.html

  33. Census Modified Race Data Summary File for Counties Alabama through Missouri. www.census.gov/popest/research/modified/STCO-MR2010_AL_MO.csv

  34. Online Retail Data Set, UCI Machine Learning Repository. www.archive.ics.uci.edu/ml/datasets/Online+Retail

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viet Phan-Luong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Phan-Luong, V. (2024). Mining Interesting Aggregate Tuples. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 824. Springer, Cham. https://doi.org/10.1007/978-3-031-47715-7_16

Download citation

Publish with us

Policies and ethics