Abstract
In business intelligence, the concept of data cube offers aggregate views over multiple dimensions of business. Computing the data cube is a challenge because of the exponential number of cuboids. This number is not only an important problem of computing, but also of searching for what is interesting or useful in the data cube. This paper presents the concept of interesting aggregate tuple that can be useful for managers to decide on their business. This concept is useful because (i) interesting aggregate tuples are those with important and credible aggregate values, and (ii) the number of interesting aggregate tuples is very small that can be considered by humans. The algorithm for searching for interesting aggregate tuples is implemented and experienced on the real datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beyer, K., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg cube. In: Proceedings of ACM Special Interest Group on Management of Data (SIGMOD’99), pp. 359–370 (1999)
Han, J., Pei, J., Dong, G., Wang, K.: Efficient computation of iceberg cubes with complex measures. In: Proceedings of ACM SIGMOD’01, pp. 1–12 (2001)
Xin, D., Han, J., Li, X., Wah, B.W.: Star-cubing: computing iceberg cubes by top-down and bottom-up integration. In: Proceedings of VLDB’03, pp. 476–487 (2003)
Shao, Z., Han, J., Xin, D.: Mm-cubing: computing iceberg cubes by factorizing the lattice space. In: Proceedings of International Conference. on Scientific and Statistical Database Management (SSDBM 2004), pp. 213–222 (2004)
Vitter, J.S., Wang, M., Iyer, B.: Data cube approximation and histograms via wavelets. In: Proceedings of International Conference on Information and Knowledge Management (CIKM’98), pp. 96–104 (1998)
Agarwal, S., et al.: On the computation of multidimensional aggregates. In: Proceedings of VLDB’96, pp. 506–521 (1996)
Harinarayan, V., Rajaraman, A., Ullman, J.: Implementing data cubes efficiently. In: Proceedings of SIGMOD’96, pp. 205–216 (1996)
Ross, K.A., Srivastava, D.: Fast computation of sparse data cubes. In: Proceedings of VLDB’97, pp. 116–125 (1997)
Casali, A., Cicchetti, R., Lakhal, L.: Extracting semantics from data cubes using cube transversals and closures. In: Proceedings of International Conference on Knowledge Discovery and Data Mining (KDD’03), pp. 69–78 (2003)
Casali, A., Nedjar, S., Cicchetti, R., Lakhal, L., Novelli, N.: Lossless reduction of datacubes using partitions. Int. J. Data Warehous. Mining (IJDWM) 5(1), 18–35 (2009)
Lakshmanan, L., Pei, J., Han, J.: Quotient cube: How to summarize the semantics of a data cube. In: Proceedings of VLDB’02, pp. 778–789 (2002)
Sismanis, Y., Deligiannakis, A., Roussopoulos, N., Kotidis, Y.: Dwarf: shrinking the petacube. In: Proceedings of ACM SIGMOD’02, pp. 464–475 (2002)
Wang, W., Lu, H., Feng, J., Yu, J.X.: Condensed cube: an efficient approach to reducing data cube size. In: Proceedings of International Conference on Data Engineering 2002, pp. 155–165 (2002)
Lakshmanan, L.V.S., Pei, J., Zhao, Y.: QC-trees: an efficient summary structure for semantic OLAP. In: Proceedings of ACM SIGMOD’03, pp. 64–75 (2003)
Feng, Y., Agrawal, D., Abbadi, A.E., Metwally, A.: Range cube: efficient cube computation by exploiting data correlation. In: Proceedings of International Conference on Data Engineering 2004, pp. 658–670 (2004)
Morfonios, K., Ioannidis, Y.: Supporting the data cube lifecycle: the power of ROLAP. VLDB J. 17(4), 729–764 (2008)
Phan-Luong, V.: A simple and efficient method for computing data cubes. In: Proceedings of The 4th International Conference on Communications, Computation, Networks and Technologies INNOV 2015, pp. 50–55 (2015)
Phan-Luong, V.: A simple data cube representation for efficient computing and updating. Int. J. Adv. Intell. Syst. 9(3 & 4), 255–264 (2016). www.iariajournals.org/intelligent_systems
Phan-Luong, V.: Searching data cube for submerging and emerging cuboids. In: Proceedings of The 2017 IEEE International Conference on Advanced Information Networking and Applications Science AINA 2017, IEEE, pp. 586–593 (2017)
Phan-Luong, V.: First-half index base for querying data cube. In: Intelligent Systems and Applications, Proceedings of Intelligent Systems Conference 2018 (IntelliSys 2018), 6–7 Septembre 2018, London, UK (2018)
Phan-Luong, V.: A complete index base for querying data cube. In: Arai, K. (ed.) Proceedings of the 2021 Intelligent Systems Conference (IntelliSys), vol. 2, Intelligent Systems and Applications Lecture Notes in Networks and Systems 295. Springer Nature Switzerland AG 2022, IntelliSys 2021, LNNS 295, pp. 486–500 (2022). https://doi.org/10.1007/978-3-030-82196-8_36
Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the ICDE Conference, pp. 421–430 (2001)
Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the average number of maxima in a set of vectors and applications. J. ACM (1978)
Vlachou, A., Vazirgiannis, M.: Ranking the sky: discovering the importance of SKYLINE points through subspace dominance relationships. Data Knowl. Eng. 69, 943–964 (2010)
Spyratos, N., Sugibuchi, T., Simonenko, E., Meghini, C.: Computing the skyline of a relational table based on a query lattice. In: CEUR Workshop Proceedings, vol. 876, pp. 145–160 (2012)
Valkanas, G., Papadopoulos, A., Gunopulos, D.: Skyline ranking á la IR. In: CEUR Workshop Proceedings, vol. 1133, pp. 182–187 (2014)
Preisinger, T., Endres, M.: Looking for the best, but not too many of them: multi-level and top-k skylines. Int. J. Adv. Softw. 8, 467–480 (2015)
Lakhal, L., Nedjar, S., Cicchetti, R.: Multidimensional skyline analysis based on agree concept lattices. Intell. Data Anal. 21, 1245–1265 (2017)
Alouaoui, H., Lakhal, L., Cicchetti, R., Casali, A.: CoSky: a practical method for ranking skylines in databases. The 11th International Conference on Knowledge Discovery and Information Retrieval, pp. 508–515, Sept 2019, Vienna, Austria (2019)
Luk, M.-H., Yiu, M.L., Lo, E.: Group-by skyline query processing in relational engines. In: CIKM’09, 2–6 Nov 2009, Hong Kong, China, pp. 1433–1436 (2009). https://doi.org/10.1145/1645953.1646138
Blackard, J.A.: The forest covertype dataset (1998). https://ftp.ics.uci.edu/pub/machine-learning-databases/covtype
Hahn, C., Warren, S., London, J.: Edited synoptic cloud re- ports from ships and land stations over the globe (2010). www.cdiac.esd.ornl.gov/cdiac/ndps/ndp026b.html
Census Modified Race Data Summary File for Counties Alabama through Missouri. www.census.gov/popest/research/modified/STCO-MR2010_AL_MO.csv
Online Retail Data Set, UCI Machine Learning Repository. www.archive.ics.uci.edu/ml/datasets/Online+Retail
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Phan-Luong, V. (2024). Mining Interesting Aggregate Tuples. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 824. Springer, Cham. https://doi.org/10.1007/978-3-031-47715-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-47715-7_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47714-0
Online ISBN: 978-3-031-47715-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)