Abstract
Abstract Argumentation Frameworks (AFs) are used, in the field of Artificial Intelligence, to evaluate the justification state of conflicting information, thus allowing the development of automatic reasoning techniques and systems. Complex argumentative processes such as decision-making and negotiation, which take place over time, can be modelled through the Concurrent Language for Argumentation, a formalism for handling concurrent interactions between intelligent agents that use an AF as shared memory. In this paper, we first show how AFs can be interpreted as dependency graphs by exploiting the relation between arguments induced by the attacks. Then, we describe a methodology for obtaining a procedure that generates the given AF. Such a procedure allows to dynamically represent dialogues and other forms of interaction that brought to the instantiation of the specified AF.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
web interface: https://conarg.dmi.unipg.it/cla/.
- 2.
An alternative option is to use maximum parallelism [6], for which processes composed through \(\Vert \) are executed at the same time. However, this approach may result in the numbering assigned to arguments by the feasible evaluation order not being unique.
References
Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011). https://doi.org/10.1017/S0269888911000166
Baumann, R., Dvorák, W., Linsbichler, T., Spanring, C., Strass, H., Woltran, S.: On rejected arguments and implicit conflicts: The hidden power of argumentation semantics. Artif. Intell. 241, 244–284 (2016)
Bistarelli, S., Taticchi, C.: A concurrent language for argumentation. In: Fazzinga, B., Furfaro, F., Parisi, F. (eds.) Proceedings of the Workshop on Advances in Argumentation in Artificial Intelligence 2020 co-located with the 19th International Conference of the Italian Association for Artificial Intelligence (AIxIA 2020), Online, November 25–26, 2020. CEUR Workshop Proceedings, vol. 2777, pp. 75–89. CEUR-WS.org (2020). http://ceur-ws.org/Vol-2777/paper67.pdf
Bistarelli, S., Taticchi, C.: Introducing a tool for concurrent argumentation. In: Faber, W., Friedrich, G., Gebser, M., Morak, M. (eds.) JELIA 2021. LNCS (LNAI), vol. 12678, pp. 18–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75775-5_2
Bistarelli, S., Taticchi, C.: Deriving dependency graphs from abstract argumentation frameworks: a preliminary report. In: Confalonieri, R., Porello, D. (eds.) Proceedings of the 6th Workshop on Advances in Argumentation in Artificial Intelligence 2022 co-located with the 21st International Conference of the Italian Association for Artificial Intelligence (AIxIA 2022), Udine, Italy, November 28, 2022. CEUR Workshop Proceedings, vol. 3354. CEUR-WS.org (2022). https://ceur-ws.org/Vol-3354/short6.pdf
Bistarelli, S., Taticchi, C.: A concurrent language for modelling arguing agents. Argument & Computation (2023). (to appear)
Caminada, M.: On the issue of reinstatement in argumentation. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 111–123. Springer, Heidelberg (2006). https://doi.org/10.1007/11853886_11
Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995). https://doi.org/10.1016/0004-3702(94)00041-X
Dutilh Novaes, C.: Argument and Argumentation. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Fall 2022 edn. (2022)
Nielsen, S.H., Parsons, S.: A generalization of dung’s abstract framework for argumentation: arguing with sets of attacking arguments. In: Maudet, N., Parsons, S., Rahwan, I. (eds.) ArgMAS 2006. LNCS (LNAI), vol. 4766, pp. 54–73. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75526-5_4
Prakken, H., Winter, M.D.: Abstraction in argumentation: Necessary but dangerous. In: Modgil, S., Budzynska, K., Lawrence, J. (eds.) Computational Models of Argument - Proceedings of COMMA 2018, Warsaw, Poland, 12–14 September 2018. Frontiers in Artificial Intelligence and Applications, vol. 305, pp. 85–96. IOS Press (2018). https://doi.org/10.3233/978-1-61499-906-5-85
Stefano Bistarelli and Carlo Taticchi are members of the INdAM Research group GNCS and Consorzio CINI. This work has been partially supported by: INdAM - GNCS Project, CUP E53C22001930001; Project FICO, funded by Ricerca di Base 2021, University of Perugia; Project GIUSTIZIA AGILE, CUP J89J22000900005; Project BLOCKCHAIN4FOODCHAIN, funded by Ricerca di Base 2020, University of Perugia; Project VITALITY, CUP J97G22000170005, funded by NRRP-MUR.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bistarelli, S., Taticchi, C. (2023). Deriving Dependency Graphs from Abstract Argumentation Frameworks. In: Basili, R., Lembo, D., Limongelli, C., Orlandini, A. (eds) AIxIA 2023 – Advances in Artificial Intelligence. AIxIA 2023. Lecture Notes in Computer Science(), vol 14318. Springer, Cham. https://doi.org/10.1007/978-3-031-47546-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-47546-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47545-0
Online ISBN: 978-3-031-47546-7
eBook Packages: Computer ScienceComputer Science (R0)